14° CONGRESSO NAZIONALE SINUT

Bologna

12-14 settembre 2024

Nutraceutica e supplementazione nello sport tra evidenze scientifiche e fake news

Luca Belli

Società Italiana Nutrizione Sport e Benessere

Il sottoscritto Luca Belli

ai sensi dell'art. 3.3 sul Conflitto di Interessi, pag. 17 del Reg. Applicativo dell'Accordo Stato-Regione del 5 novembre 2009,

dichiara

che negli ultimi due anni NON ha avuto rapporti diretti di finanziamento con soggetti portatori di interessi commerciali in campo sanitario

STNSEB NON-CME SESSIO SINSeB - ASAND Pre-congress Masterclass: SPORTS NUTRITION 22 NOVEMBER 2024 09:00 A.M. • Introduction F. Angelini, E. Troiano Chairmen: L. Belli, M. Molin 09:30 A.M. • Lectio Magistralis The evolution of sports nutrition from its beginnings to the present day L. Gatteschi 10:00 A.M. • The Strength Tests P. Cigni, M. Gallo 10:20 A.M. • Training: differences between endurance sports and strength and power sports F. Pittau 10:40 A.M. • Nutrition in endurance sports L. Bergami 11:00 A.M. • Coffee break 11:30 A.M. • Practical management of nutrition in endurance sports J.P. Perret 11:50 A.M. • Nutrition and supplementation in strength and power sports A. Vincenzi 12:10 P.M. • Practical management of nutrition in strength and power sports A. Veneto 12:30 P.M. • Closing remarks 01:00 P.M. • Masterclass conclusions

STNSEB

22-23 November 2024 Bologna Savoia Regency Hotel

SINUT Società Italiana di Nutraceutica

SINSEB NUTRIZIONE SPORT BENESSERE

www.sinseb.it

TOPICS

•Composizione Corporea

Nutrizione sportiva nell'Atleta Master nei vari sport
Nutraceutica per la prevenzione e a supporto della prestazione sportiva

Rischio cardiovascolare nell'Atleta Master
Medicina sportiva e prevenzione degli infortuni
Sarcopenia: Esercizio fisico e Nutrizione

Marketing of Nutraceuticals in Sports

"The market for nutraceuticals is booming."

Market Trends

1.Market Size: The global nutraceutical market is estimated to be worth \$488.41 billion in 2024 and is expected to reach \$626.02 billion by 2029, with a compound annual growth rate (CAGR) of 5.09%.

2.Growth in Italy: In Italy, the dietary supplements sector, which includes nutraceuticals, is worth about €3.8 billion and is expected to grow further.

Growth Factors

•Interest in Health and Wellness: The growing interest in maintaining overall health and wellness is one of the main factors driving market growth.

•**Regulation and Quality**: Companies must adhere to strict quality standards and regulations to ensure the safety and efficacy of their products, which is crucial for maintaining consumer trust.

Future Prospects

The nutraceutical market in sports is expected to grow further due to the increasing demand for products that enhance sports performance and recovery, as well as ongoing innovation in the sector.

The complexity of sports nutrition

The complexity of sports nutrition

Athletes and Possibile Benefits of Nutraceuticals

Consensus statement

IOC consensus statement: dietary supplements and the high-performance athlete

To cite: Maughan RJ, Burke LM, Dvorak J, et al. Br J Sports Med 2018;52:439–455.

ATHLETES USE SUPPLEMENTS

- 1. to correct or prevent nutrient deficiencies that may impair health or performance
- 2. for convenient provision of energy and nutrients around an exercise session

3. to achieve a specific and direct performance benefit in competition

4. to gain a performance improvement indirectly accrued from outcomes such as allowing more effective training (ie, higher intensity, greater volume), better recovery from training sessions, optimising mass and body composition, or reducing risks of injury and illness

5. for financial gain (sponsorship) or because products are provided free of charge

6. as a 'just in case' insurance policy

7. because they know or believe that other athletes/competitors are using the supplement(s).

CONGRESSO NAZIONALE SINUT NUTRACEUTICALS in Sports

It is difficult to quantify in percentage terms how much proper nutrition and/or supplementation influences sports performance, as there are multiple factors that contribute to optimizing good performance, from genetics to training, from environmental factors such as hot or cold climate, to humidity levels or the athlete's psychology.

Potential Risks Vs Benefits of Nutraceuticals

Risks or the costs

- · the possibility that the supplement is ineffective
- the possibility that the supplement may actually decrease performance
- the possibility that the supplement does not contain the active substance
- the possibility that the supplement contains unwanted substances
- · the possibility of side effects
- · the possible risks to health
- · the potential for an adverse doping result
- · the cost of the supplement

Potential benefits

- correction of nutrient deficiencies
- achievement of nutritional goals
- enhancement of a physiological/biochemical function to directly or indirectly improve performance

Source: adapted from Maughan, Burke et al., 2018, https://goo.gl/vF6Tji

wa nutrients

Risk of contamination

With rates of contamination between 12 and 58%, non-intentional doping is a point to take into account before establishing a supplementation program.

A Big Problem

International Journal of Medical Science and Health Research

Vol. 3, No. 02; 2019

ISSN: 2581-3366

Nutritional Supplements Use in Physically Active Italian Adults: What Do They Use and How Are They Influenced?

Roberto Cannataro¹^a, Virginia Lemon², Maria Cristina Caroleo¹, Erika Cione¹ and Stella Lucia Volpe².

Source of information on the use of NS

N. 3148

• M 92,2% F 7,8%

14° CONGRESSO NAZIONALE SINUT

ATTENTION Supplements whithout Evidence

Revisione 2018

Kerksick et al. Journal of the International Society of Sports Nutrition (2018) 15:38 https://doi.org/10.1186/s12970-018-0242-y

REVIEW

Journal of the International Society of Sports Nutrition

Open Access

(CrossMarl

Bologna

12-14 settembre 2024

ISSN exercise & sports nutrition review update: research & recommendations

Tabella 11.2 – Integratori e prodotti per lo sport suddivisi in base all'efficacia d'azione, alla sicurezza d'uso e ai vigenti regolamenti antidoping internazionali.

Gruppo A	Integratore
Prodotti dall'efficacia comprovata in alcuni sport e per	
specifiche situazioni (il cui uso prevede protocolli	
basati sull'evidenza)	Prodotti per lo sport:
	Bevande per lo sport
Prodotti per lo sport: sono prodotti specifici utili per	Gel per lo sport
fornire una fonte pratica di nutrienti quando è	Gelatine e caramelle per lo sport
impraticabile consumare alimenti d'uso comune	Pasti liquidi
	Proteine del siero di latte
	Barrette energetiche
	Elettroliti
Integratori o farmaci: vengono usati per trattare	Integratori o farmaci:
problemi clinici, incluse carenze nutritive	Integratori di calcio
diagnosticate. Richiedono, pertanto, prescrizione o	Integratori di ferro
consiglio e supervisione da parte di un medico	Probiotici
qualificato	Multivitaminici/minerali
	Vitamina D
Aiuti ergogenici: utili per contribuire al	Aiuti Ergogenici:
mialioramento della prestazione sportiva se	Caffeina
adoperati con protocolli individuali sotto la	Beta alanina
direzione di un medico sportivo o altro	Bicarbonato
professionista qualificato. Sebbene sussista	Succo di barbabietola/nitrati
un'evidenza di base per l'uso di questi prodotti,	Creatina
spesso è necessaria una ricerca supplementare per	
ottimizzare i protocolli per l'uso specifico e	
individuale.	

Luca Belli- SINSeB

Nutraceuticals and Sport

Nutrition supplement	Description	Claim	Scientific evidence
Androstenedione	Synthetic product to stimulate testosterone synthesis	Increases testosterone, increases muscle mass, and improves recovery	Does not increase testosterone and has no effect on strength
Ashwagandha	Herb	Adaptogen that reduces stress, increases muscle mass, and improves performance	No effect on performance
Bee pollen	Mixture of bee saliva, plant nectar, and pollen	Increases energy levels, enhances physical fitness, improves endurance, and boosts immune function	No supporting evidence
Beetroot juice	A good source of dietary nitrate (NO ₃ ⁻)	Decreases the oxygen cost of exercise and improves endurance exercise performance	Decreases the oxygen cost of exercise and improves endurance exercise performance
β-alanine	Amino acid that in combination with histidine forms the dipeptide carnosine, which is an important intracellular buffer	Buffers hydrogen ions in muscle and improves high-intensity exercise performance	Positive effects in high- intensity exercise capacity tests, but evidence for improvements in performance tests is lacking
β-hydroxy β-methylbutyrate (HMB)	Metabolite of the essential amino acid leucine	Decreases protein breakdown, improves muscle mass, and increases strength	Possible small effects on lean body mass and strength

Nutrition supplement	Description	Claim	Scientific evidence
Caffeine	Substance in coffee and chocolate	Increases performance and alertness	Improves performance in most events except short high-intensity exercise and increases cognitive functioning during exercise
Cannabidiol	Nonpsychoactive substance Has anxiolytic properties, from the cannabis plant reducing emotional responses to stress, fearful memories, and pain; also has anti-inflammatory actions		Some evidence that it could assist recovery from exercise but no supporting evidence for improving performance
Carnitine	Vitamin-like substance important for FA transport	Improves fat oxidation and endurance exercise performance, helps weight loss, and improves VO ₂ max	Taken up by muscle; if coingested with carbohydrate, improves performance in endurance exercise
Choline	Precursor of the neurotransmitter acetylcholine	Improves performance and decreases fatigue	No supporting evidence
Chromium	Trace element that potentiates insulin action	Builds muscle and helps weight loss	No supporting evidence
Coenzyme Q10	Part of the electron-transport Improves VO2max, chain in the mitochondria improves performance, and reduces fatigue		No supporting evidence
Cordyceps	Mushroom	Improves cognitive function and exercise performance	Limited supporting evidence

14° CONGRESSO NAZIONALE SINUT

ition supplement	Description Claim		Scientific evidence	
Creatine	High-energy phosphate of	arrier Improves strength, reduces	Improves performance	
	important for direct ene	rgy fatigue, and increases protein synthesis	in single and repeated sprint bouts and improve recovery between bouts; anabolic properties unclear	
Dehydroepiandrosterone (Di	HEA) A precursor of testostere	one and Improves immune function increases life span, protects against cardiovascular diseases, increases lean body mass, and increases well-being	, Some evidence in human s for improved well-being	
Dihydroxyacetone (DHA) and pyruvate	d Intermediates of carboh metabolism usually used combination	ydrate Facilitate carbohydrate d in and fat metabolism and improve endurance performance, insulin sensitivity, and recovery and increase glycogen storage	Limited supporting evidence	
Fish oil and omega-3 fatty a	cids Polyunsaturated fatty a	cids Increase VO2max and muscle protein synthesis, enhance recovery from damaging exercise, and improve cognitive function	No supporting evidence for increased VO ₂ max, but some evidence for the other effects with combinations of DHE and EHA	
Ginseng	Root of the Araliaceae p	lant Improves strength, performance, stamina, and cognitive functioning and reduces fatigue	No supporting evidence, but studies were poorly designed	
Glandulars	ars Extracts of animal glands		No supporting evidence	
Green tea	Plant leaf extract contai polyphenol catechins an caffeine	ning Increases fat oxidation at d rest and during exercise	Limited supporting evidence	
Glycerol	Backbone of a triacylgly molecule	cerol Induces hyperhydration, decreases heat stress, and	Induces hyperhydration and decreases heat stress	
		TRAFFILME RAFFARMERAL	during exercise; effects or performance unclear	

utrition supplement	Description	Claim	Scientific evidenc
Inosine	Nucleoside	Increases ATP stores and improves strength, training quality, and performance	No supporting evidence
Ketone salts	Sodium or potassium salts Alternative fuel for muscle, No support of ketone bodies (β-hydroxy is glycogen sparing, and increases endurance butyrate or acetoacetate) performance performance		No supporting evidence
Lecithin	Phosphatidylcholine	Increases VO ₂ max and performance	No supporting evidence
Medium-chain triacylglycerol (MCT)	Synthesized from coconut oil Supplies energy, reduces muscle glycogen breakdown, and improves performance		No supporting evidence
Pangamic acid	Varied composition depending on supplier	Increases oxygen delivery	No supporting evidence
Phosphate salts	Mineral	Increases ATP, provides energy, and buffers lactic acid	Possible ergogenic effects; improves performance in events 1 hour or shorter
Phosphatidylserine	Structural component of cell membranes	Structural component of cell Reduces stress responses Little membranes and improves recovery	
Polylactate and lactate salts	Polymers of lactate	Provide energy	No effect on performance
Pyruvate	Intermediate of carbohydrate metabolism	Facilitates carbohydrate metabolism and improves endurance performance and recovery	Limited supporting evidence
Polyphenols	Plant phytonutrient such as Improves endurance flavonoids that contain multiple performance phenolic groups (e.g., quercetin)		Limited evidence of improved performance in sufficient doses
Sodium bicarbonate Buffer present in blood		Buffers lactic acid and improves high-intensity exercise performance	Improves high-intensity exercise performance

Nutrition supplement	Description	Claim	Scientific evidence
Sodium citrate	Buffer	Buffers lactic acid and improves high-intensity exercise performance	Can improve performance with larger doses
Sodium nitrate	Mineral source of nitrate	Decreases the oxygen cost of exercise and improves endurance exercise performance	Decreases the oxygen cost of exercise and improves endurance exercise performance
Vanadium	Trace element	Helps weight loss and improves insulin sensitivity and recovery	Increases insulin sensitivity in patients with insulin resistance; studies in healthy individuals lacking
Wheat germ oil	Extracted from embryo of wheat	Improves endurance	No supporting evidence

WALLE SINUT HYDRATION IN SPORT WATER COCONUT SUPER DRINK Myth or reality?

Coconut Water Vs. Sports Drinks

14° CONGRESSO NAZIONALE SINUT

Pros:

1.Natural Electrolytes: Coconut water contains naturally occurring electrolytes like potassium, sodium, magnesium, and calcium, which are essential for hydration.

2.Low in Calories: It's generally lower in calories compared to many sports drinks, making it a lighte hydration option.

3.No Added Sugars: Pure coconut water doesn't contain added sugars, artificial colors, or preservatives.

4.Antioxidant Properties: Coconut water has antioxidants which can help neutralize oxidative stress and free radicals.

5.Digestive Health: It can aid in digestion due to its fiber content and bioactive enzymes.

Cons:

1.Taste: Some people find the taste of coconut water to be an acquired one and may not prefer its natural, nutty flavor.

2.Cost: It can be more expensive than most sports drinks, especially if it's organic or from premium brands.

3.Lower Sodium: While it's rich in potassium, it's lower in sodium, which is a crucial electrolyte lost in sweat.

Brief Report Coconut Water: A Sports Drink Alternative?

Brendan J. O'Brien ^{1,}*¹, Leo R. Bell ¹, Declan Hennessy ², Joshua Denham ^{3,4} and Carl D. Paton ⁵

HYDRATION IN SPORT Milk the new sport drink Myth or reality?

of Sports Nutrition		BioMed Central
Review		Open Acces
Milk: the new sports drink? A Review		
Brian D Roy		
Address: Centre for Muscle Metabolism and Biophysics, Faculty of Applied Health Scienc Email: Brian D Roy - Brian.Roy@brocku.ca	ces, Brock University, St. Catharine	s, Ontario, Canada
Published: 2 October 2008	Received: 18 June 2008	
	Accepted: 2 October 2008	

RESULTS BY YEAR

British Journal of Nutrition (2007), 98, 173–180 © The Authors 2007

Milk as an effective post-exercise rehydration drink

Susan M. Shirreffs*, Phillip Watson and Ronald J. Maughan School of Sport and Exercise Sciences, Loughborough University, Loughborough LE11 3TU, UK (Received 14 July 2006 - Revised 19 January 2007 - Accepted 24 January 2007)

 Randomized Controlled Trial
 > Br J Nutr. 2013 Oct;110(7):1285-91.

 doi: 10.1017/S0007114513000536. Epub 2013 May 31.

Effect of varying the concentrations of carbohydrate and milk protein in rehydration solutions ingested after exercise in the heat

Lewis J James ¹, Gethin H Evans, Joshua Madin, Darren Scott, Michael Stepney, Russell Harris, Robert Stone, David J Clayton

Randomized Controlled Trial> Appl Physiol Nutr Metab. 2014 Dec;39(12):1366-72.doi: 10.1139/apnm-2014-0174. Epub 2014 Aug 14.

Comparing the rehydration potential of different milk-based drinks to a carbohydrate-electrolyte beverage

Ben Desbrow ¹, Sarah Jansen, Abby Barrett, Michael D Leveritt, Christopher Irwin

 Randomized Controlled Trial
 Am J Clin Nutr. 2016 Mar;103(3):717-23.

 doi: 10.3945/ajcn.115.114769. Epub 2015 Dec 23.

A randomized trial to assess the potential of different beverages to affect hydration status: development of a beverage hydration index

Ronald J Maughan ¹, Phillip Watson ², Philip Aa Cordery ², Neil P Walsh ³, Samuel J Oliver ³, Alberto Dolci ³, Nidia Rodriguez-Sanchez ⁴, Stuart Dr Galloway ⁴

Affiliations + expand PMID: 26702122 DOI: 10.3945/ajcn.115.114769

> Eur J Appl Physiol (2008) 104:633-642 DOI 10.1007/s00421-008-0809-4

ORIGINAL ARTICLE

A comparison of the effects of milk and a carbohydrate-electrolyte drink on the restoration of fluid balance and exercise capacity in a hot, humid environment

Phillip Watson · Thomas D. Love · Ronald J. Maughan · Susan M. Shirreffs

Review > J Appl Physiol (1985). 2017 Apr 1;122(4):945-951. doi: 10.1152/japplphysiol.00745.2016. Epub 2017 Jan 26.

Optimizing the restoration and maintenance of fluid balance after exercise-induced dehydration

Gethin H Evans ¹, Lewis J James ², Susan M Shirreffs ³, Ronald J Maughan ²

Affiliations + expand PMID: 28126906 DOI: 10.1152/japplphysiol.00745.2016

HYDRATION IN SPORT Milk the new sport drink Myth or reality?

"Milk is a complex drink containing sodium, potassium, carbohydrate, and protein, constituents that may all independently and positively influence rehydration either by affecting the composition of the extracellular fluid or by reducing the overall rate of fluid absorption."

Evans, G. H., James, L. J., Shirreffs, S. M., & Maughan, R. J. (2017). Optimizing the restoration and maintenance of fluid balance after exercise-induced dehydration. *Journal of applied physiology(Bethesda,Md.:1985),122*(4),945–951. https://doi.org/10.1152/japplphysiol.00745.2016

post exercis post exercis based of the second secon

DIETARY PROTEIN IN SPORT

Protein quality and Protein intake

Protein Source

Protein Safety

Protein Supplement and performance

Timing

EAA

Importance of Quality Supplements

Article Focus on the Protein Fraction of Sports Nutrition Supplements

Luisa Pellegrino 🖻, Johannes A. Hogenboom, Veronica Rosi, Marta Sindaco, Stefano Gerna and Paolo D'Incecco *🗅

Abstract: Increasing awareness of balanced diet benefits is boosting the demand for high-protein food and beverages. Sports supplements are often preferred over traditional protein sources to meet the appropriate dietary intake since they are widely available on the market as stable ready-to-eat products. However, the protein components may vary depending on both sources and processing conditions. The protein fraction of five commercial sports supplements was characterized and compared with that of typical industrial ingredients, i.e., whey protein concentrates and isolates and whey powder. The capillary electrophoresis profiles and the amino acid patterns indicated that, in some cases, the protein was extensively glycosylated and the supplemented amino acids did not correspond to those declared on the label by manufacturers. The evaluation by confocal laser scanning microscopy evidenced the presence of large aggregates mainly enforced by covalent crosslinks. The obtained findings suggest that, beside composition figures, provisions regarding sports supplements should also consider quality aspects, and mandatory batch testing of these products would provide more reliable information to sport dieticians.

Citation: Pellegrino, L.; Hogenboom, J.A.; Rosi, V.; Sindaco, M.; Gerna, S.; D'Incecco, P. Focus on the Protein Fraction of Sports Nutrition Supplements. *Molecules* **2022**, *27*, 3487. https://doi.org/10.3390/ molecules27113487

Figure 2. CLSM of whey powder (WP) (A), whey protein concentrate (WPC) (B) and Y08 (C) samples rehydrated with water (upper row) and subsequently solubilized with urea/DDT buffer (lower row).

- Aggregates and Protein glycosilated
- Nutrition Facts Label

Protein and Sleep

Recent studies investigating the impact of pre-sleep protein ingestion suggest that at least 40 g of protein is required to display a robust increase in muscle protein synthesis rates throughout overnight sleep

w nutrients

MDPI

Review

Pre-Sleep Protein Ingestion to Improve the Skeletal Muscle Adaptive Response to Exercise Training

Jorn Trommelen and Luc J. C. van Loon *

NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, P.O. Box 616, Maastricht 6200 MD, The Netherlands; jorn.trommelen@maastrichtuniversity.nl * Correspondence: l.vanloon@maastrichtuniversity.nl; Tel.: +31-43-388-1397

Figure 2. Conceptual framework of the overnight muscle protein synthetic response to 40 g of pre-sleep protein feeding at rest or following prior exercise.

Figure 1. Schematic representation of the process of muscle protein synthesis (MPS) and muscle protein breakdown (MPB) throughout the day. Protein ingestion stimulates MPS rates and allows for net muscle protein accretion (green areas). During post-absorptive conditions, MPB rates exceed MPS rates, resulting in a net loss of muscle protein (red areas). Overnight sleep is the longest post-absorptive period of the day (**A**). Pre-sleep protein ingestion stimulates overnight muscle protein synthesis rates (**B**), thereby improving muscle reconditioning during overnight sleep.

12-14 settembre 2024 Bologna

BCAA vs EAA

At present, we do not believe there is sufficient evidence to recommend BCAA supplements for enhancing muscle anabolism or alleviating muscle damage or, for that matter, for any other reason.

Sufficient high-quality protein or EAA (that naturally includes BCAA)

Education

Supplements used to prevent or treat nutrient deficiencies

Consensus statement

IOC consensus statement: dietary supplements and the high-performance athlete

To cite: Maughan RJ, Burke LM, Dvorak J, et al. Br J Sports Med 2018;52:439–455.

Mn	P		N		F	
	S		Cu		Cr	Fe
Zn		B		Ca	K	Mg
Zn	H	B	Se	Ca		ING

A frank deficiency of one or more of these nutrients may lead to a measurable impairment of sports performance either directly or by reducing the athlete's ability to train effectively (eg, iron deficiency anaemia) or to stay free from illness or injury (eg, impact of vitamin D deficiency on bone health).

Table 1 Exa	Table 1 Examples of micronutrients often requiring supplementation in athletes (see Larson-Meyer et al ¹⁸ for additional information)					
Micronutrient	Overview	Diagnosis and outcomes of insufficiency	Protocols and outcomes of supplementation			
Vitamin D	It is important in the regulation of gene transcription in most tissues, so insufficiency/deficiency affects many body systems. ⁴² Many athletes are at risk of insufficiency at various times throughout the year. ⁴³	No consensus over the serum 25-hydroxyvitamin D concentration (the marker of vitamin D status) that defines deficiency, insufficiency, sufficiency and a tolerable upper limit. The need to supplement depends on UVB exposure and skin type.	Supplementation of between 800 IU and 1000–2000 IU/day is recommended to maintain status for the general population. Supplementation guidelines are not yet established in athletes. Short-term, high-dose supplementation which includes 50 000 IU/week for 8–16 weeks or 10 000 IU/day for several weeks may be appropriate for restoring status in deficient athletes. Careful monitoring is necessary to avoid toxicity. ⁴⁴			
Iron	Suboptimal iron status may result from limited iron intake, poor bioavailability and/or inadequate energy intake, or excess iron need due to rapid growth, high-altitude training, menstrual blood loss, foot-strike haemolysis, or excess losses in sweat, urine or faeces. ⁴⁵	Several measures performed simultaneously provide the best assessment and determine the stage of deficiency. Recommended measures: serum ferritin, transferrin saturation, serum iron, transferrin receptor, zinc protoporphyrin, haemoglobin, haematocrit and mean corpuscular volume. ⁴⁶	Athletes who do not maintain adequate iron status may need supplemental iron at doses greater than their RDA (ie, >18 mg/ day for women and >8 mg/day for men). Athletes with iron deficiency require clinical follow-up, which may include supplementation with larger doses of oral iron supplementation along with improved dietary iron intake. ⁴⁵ Numerous oral iron preparations are available and most are equally effective as long as they are taken. ⁴⁷ High-dose iron supplements, however, should not be taken unless iron deficiency is present.			
Calcium	Avoidance of dairy products and other calcium-rich foods, restricted energy intake and/or disordered eating increases risk of suboptimal calcium status. ⁴⁵	There is no appropriate indicator of calcium status. Bone mineral density scan may be indicative of chronic low calcium intake, but other factors including suboptimal vitamin D status and disordered eating are also important	Calcium intakes of 1500 mg/day and 1500–2000 IU vitamin D are recommended to optimise bone health in athletes with low energy availability or menstrual dysfunction. ⁴⁵			

Note: Indiscriminate supplementation with any of the above nutrients is not recommended. Deficiencies should first be identified through nutritional assessment, which includes dietary intake and the appropriate blood or urinary marker, if available.¹⁷

Supplements used to prevent or treat nutrient deficiencies

<u>Figure 3</u>: Sources of Essential Fatty Acids and Omega-3 / Omega-6 PUFA Metabolism. Lopez

Rapporto Omega6/Omega 3 nella popolazione italiana è tra 10 e 13 : 1

IOC consensus statement: dietary supplements and the high-performance athlete

Maughan RJ, et al. Br J Sports Med 2018;52:439–455.

Table 5 Supplements that may assist with training capacity, recovery, muscle		preness and injury management
Supplement	Proposed mechanism of action	Evidence for efficacy ⁴¹
Omega-3 fatty acids About 2 g/day	Improved cognitive processing Decreased risk/enhanced recovery from mTBI Increased muscle protein synthesis Reduced symptoms of, or enhanced recovery from, muscle damaging exercise (eg, DOMS)	 Improved cognitive processing following omega-3 fatty acid supplementation shown in healthy older adult with mild or severe cognitive impairment (reviewed in ref ¹³⁸). It is not known if these benefits would occur in young, healthy athletes, or how this would translate to athletic performance. Animal data show that the structural damage and cognitive decline associated with mTBI are reduced/attenuated with omega-3 fatty acid supplementation when ingested either before or after the injury (reviewed in refs ^{138–140}). Two case studies support these findings, ¹⁴¹ ¹⁴² and large, double-blind, placebo-controlled trials are currently under way (ClinicalTrials.gov NCT101903525 and NCT01814527). In muscle, omega-3 fatty acid supplementation can increase muscle protein synthesis, ¹⁴³ ¹⁴⁴ but this may not occur when protein is ingested after exercise in recommended amounts. ¹⁴³ ¹⁴⁴
		Anti-inflammatory effects of omega-3 fatty acid intake may reduce muscle damage or enhance recovery from intense, eccentric exercise (eg, decrease DOMS), but this is not a consistent finding. ^{145 146} No indication that decreased omega-3 fatty acids in the body impair performance, and high-dose supplements can cause some adverse effects (reviewed in refs ^{114 139}), so the best recommendation may be to include rich sources of omega-3 fatty acids, such as fatty fish, in the diet instead of supplements. Low risk but unclear if supplementation should be pursued by athletes, in lieu of including fatty fish in the diet as a source of omega-3 fatty acids. Fish oil or omega-3 fatty acid supplement consumption could include heavy metal contaminants, or cause bleeding, digestive problems and/ or increased LDL.

fuori limite poco sopra limite valori buoni valori ottimali

Fat profile and precision nutraceutilcals supplements

FAT PROFILE SU ERITROCITI DI MEMBRANA RBCs e PLASMA			1		
ACIDO GRASSO	NOME ACIDO GRASSO	% Acidi Grassi RBCs	Riferimento RBCs (%)	% Acidi Grassi plasma	
ACIDI GRASSI SATURI (SFA)	Palmitico C16:0 Stearico C18:0	23,3 20,9	17-27 13-20	28,4 14,1	
ACIDI GRASSI MONO INSATURI (MUFA)	Palmitoleico C16:1 n-7 Oleico C18:1 n-9 Vaccenico C18:1 n-7	0,28 16,8 1,2	0,2-0,5 9-18 0,7-1,3	0,58 13,1 1,8	
ACIDI GRASSI POLIINSATURI (PUFA)-Omega-6	Cis-Linoleico C18:2 n-6 Diomo-gamma-Linolenico C20:3 n-6 DGLA Arachidonico C20:4 n-6 AA	8,9 2,5 16,0	9-16 1,3-2,4 13-17	13,9 3,8 13,3	
ACIDI GRASSI POLIINSATURI (PUFA)-Omega-3	Eicosapentaenoico C20:5 n-3 EPA Docosaesaenoico C22:6 n-3 DHA	0,32 4,2	0,5-0,9 5-7	0,37 2,6	
	SFA MUFA PUFA	44 18 32	30-45 13-23 28-39	AA/EPA 35,9	Valore di riferimento < 5 valore ottimale 5-15 valori popolazione > 15 valore patologico
	SFA/MUFA OMEGA-6/OMEGA-3	2,4	1,7-2	EPA + DHA 3,0	< 2,9 molto basso 2,9 · 4,0 basso 4,0 · 5,2 buono
	OMEGA-3 INDEX	4,5	< 4 molto basso (rischio cardiovascolare) 4 - 6 basso 6 - 8 buono > 8 ottimale	AA/(EPA + DHA) 4,5	> 5,2 ottimale < 1 valore ottimale 1-3 popolazione media > 3 valore patologico
			-		_
	Indice Δ9- desaturasi 18:0/18:1	1,2	<0,7 iperattività 0,7-1,3 normale attività >1,3 ipoattività		
	Indice Δ6- desaturasi + elungasi 18:2/20:3	4	<5 iperattività 5-8 normale attività >8 ipoattività		_
	Indice Δ5- desaturasi 20:4/20:3	6	<6 ipoattività 6-9 normale attività >9 iperattività		
	Indice Δ9- desaturasi 16:0/16:1	83	<45 iperattività 45-132 normale attività >132 ipoattività		

Relationship Between Distance Run Per Week, Omega-3 Index, and AA/EPA

 $\begin{array}{l} \underline{ Front\ Physiol.}\ 2019\ Apr\ 26;10:487.\ doi:\ 10.3389/fphys.2019.00487.\\ eCollection\ 2019.\\ \underline{ Davinelli\ S}^{1,2},\ \underline{ Corbi\ G}^1,\ \underline{ Righetti\ S}^3,\ \underline{ Casiraghi\ E}^4,\ \underline{ Chiappero}\\ \underline{ F}^4,\ \underline{ Martegani\ S}^5,\ \underline{ Pina\ R}^4,\ \underline{ De\ Vivo\ I}^{2,6},\ \underline{ Simopoulos\ AP^7},\ \underline{ Scapagnini\ G}^1. \end{array}$

These findings suggest that distance running training and its weekly volume may negatively contribute to changes of the ω -3 index and AA/EPA ratio.

Original Research Communications

Predicting the effects of supplemental EPA and DHA on the omega-3 index

Rachel E Walker,¹ Kristina Harris Jackson,² Nathan L Tintle,³ Gregory C Shearer,^{1,4} Aldo Bernasconi,⁵ Serge Masson,⁶ Roberto Latini,⁶ Bobak Heydari,⁷ Raymond Y Kwong,⁸ Michael Flock,⁹ Penny M Kris-Etherton,¹ Anne Hedengran,¹⁰ Robert M Carney,¹¹ Ann Skulas-Ray,¹² Samuel S Gidding,¹³ Antonella Dewell,¹⁴ Christopher D Gardner,¹⁴ S Marlene Grenon,¹⁵ Barbara Sarter,¹⁶ John W Newman,¹⁷ Theresa L Pedersen,¹⁸ Mark K Larson,¹⁹ and William S Harris^{2,4}

FIGURE 1 LC n-3 fatty acid doses needed to attain an RBC EPA + DHA concentration (omega-3 index, or O3I in the equations) of 8% in ~13 wk, as a function of the baseline O3I. The model equations as estimated using the 10-fold cross-validation approach described in the article with an *n* of 1422 were rearranged to solve for the necessary dosage to attain a postsupplementation O3I of 8%. The results are shown with separate lines for ethyl ester (EE) and triglyceride (TG) supplements. The error bars reflect the 95% CIs. The equation for TG is: *Dose* = 3292.68293 –

 $\frac{\sqrt{7.29 \times 10^{-6} + 1.64 \times 10^{-6} (-4.479 + 0.158 Baseline O3I + 0.05 Baseline O3I^2)}}{8.2 \times 10^{-7}}$ The equation for EE is: $Dose = 3292.68293 - 10^{-7}$

```
\frac{\sqrt{7.29\times10^{-6}+1.64\times10^{-6}(-5.4+0.158\textit{BaselineO3I}+0.05\textit{BaselineO3I}2)}}{8.2\times10^{-7}}.
```

Baseline O3I, dose, and chemical formulation were significant predictors of O3I response to supplementation. The model developed here can be used by researchers to help estimate the O3I response to a given EPA + DHA dose and chemical form.

ASN

Nutritional supplements for immune Health in athletes

Table 4 Nutritio	onal supplements for immune health in athletes: propo	osed mechanism of action and evidence for efficacy
Supplement	Proposed mechanism of action	Evidence for efficacy
Vitamin D	This is an essential fat-soluble vitamin known to influence several aspects of immunity, particularly innate immunity (eg, expression of antimicrobial proteins). Skin exposure to sunlight accounts for 90% of the source of vitamin D.	Moderate support Evidence for deficiency in some athletes and soldiers, particularly in the winter (decreased skin sunlight exposure) Deficiency has been associated with increased URS. Recommend 1000 IU/day D ₃ autumn-spring to maintain sufficiency Further support required ⁹⁸
Probiotics	Probiotics are live micro-organisms that when administered orally for several weeks can increase the numbers of beneficial bacteria in the gut. These have been associated with a range of potential benefits to gut health, as well as modulation of immune function.	Moderate support in athletes with daily dose of ~10 ¹⁰ live bacteria Cochrane review of 12 studies (n=3720) shows ~50% decrease in URS incidence and ~2 day shortening of URS; minor side effects. More evidence is required supporting efficacy to reduce gastrointestinal distress and infection, for example, in a traveling athlete. ^{23 99}
Vitamin C	This is an essential water-soluble antioxidant vitamin that quenches ROS and augments immunity. It reduces interleukin-6 and cortisol responses to exercise in humans.	Moderate support for 'preventing URS' Cochrane review of 5 studies in heavy exercisers (n=598) shows ~50% decrease in URS taking vitamin C (0.25–1.0 g/day). Further support required Unclear if antioxidants blunt adaptation in well-trained Relatively small effects on cortisol compared with carbohydrate; immune measures no different from placebo No support for 'treating URS' Cochrane reviews show no benefit of initiating vitamin C supplementation (>200 mg/day) effer oncet of URS ¹⁰⁰

	Bologi la
	Immune System
No Contraction	

12-14 settembre 2024

Rologna

Cochrane reviews have noted the low quality of many studies on nutritional supplements that are claimed to support immunity; specifically, small samples, poor controls and unclear procedures for randomization and blinding were commonplace.

Glutamine	This is a non-essential amino acid that is an important energy substrate for immune cells, particularly lymphocytes. Circulating glutamine is lowered after prolonged exercise and very heavy training.	Limited support Supplementation before and after exercise does not alter immune perturbations. Some evidence of a reduction in URS after endurance events in competitors receiving glutamine supplementation $(2\times 5 \text{ g})$ Mechanism for therapeutic effect requires investigation. ¹⁰⁷ 108
Caffeine	This is a stimulant found in a variety of foods and drinks (eg, coffee and sports drinks). Caffeine is an adenosine receptor antagonist and immune cells express adenosine receptors.	Limited support Evidence that caffeine supplementation activates lymphocytes and attenuates the fall in neutrophil function after exercise Efficacy for altering URS in athletes remains unknown. ¹⁰⁹¹¹⁰
Echinacea	This is a herbal extract claimed to enhance immunity via stimulatory effects on macrophages. There is some in vitro evidence for this.	Limited support Early human studies indicated possible beneficial effects, but more recent, larger scale and better controlled studies indicate no effect of Echinacea on infection incidence or cold symptom severity. ¹¹¹
Omega-3 PUFAs	Found in fish oil May influence immune function by acting as a fuel, in their role as membrane constituents or by regulating eicosanoid formation, for example, prostaglandin Prostaglandin is immunosuppressive. Claimed to exert anti-inflammatory effects postexercise	Limited support for blunting inflammation and functional changes after muscle-damaging eccentric exercise in humans and no evidence of reducing URS in athletes ^{113 114}
Vitamin E	An essential fat-soluble antioxidant vitamin that quenches exercise-induced ROS and augments immunity	No support Immune-enhancing effects in the frail elderly but no benefit in young, healthy humans One study actually showed that vitamin E supplementation increased URS in those under heavy exertion. High doses may be pro-oxidative. ^{115,116}

Carbohydrate (drinks, gels)	It maintains blood glucose during exercise, lowers stress hormones, and thus counters immune dysfunction.	Low-moderate support Ingestion of carbohydrate (30–60 g/hour) attenuates stress hormone and some, but not all, immune perturbations during exercise. Very limited evidence that this modifies infection risk in athletes ^{19 102}
Bovine colostrum	First milk of the cow that contains antibodies, growth factors and cytokines Claimed to improve mucosal immunity and increase resistance to infection	Low-moderate support that bovine colostrum blunts the decrease in saliva antimicrobial proteins after heavy exercise Some evidence in small numbers of participants that bovine colostrum decreases URS Further support required ^{103 104}
Polyphenols, for example, Quercetin	These are plant flavonoids. In vitro studies show strong anti-inflammatory, antioxidant and antipathogenic effects. Animal data indicate an increase in mitochondrial biogenesis and endurance performance.	Low-moderate support Human studies show some reduction in URS during short periods of intensified training and mild stimulation of mitochondrial biogenesis and endurance performance, although in small numbers of untrained subjects. Limited influence on markers of immunity Putative antiviral effect for Quercetin Further support required ^{105 106}

Ergogenic Supplements Supported by Good Evidence of Efficacy

SINUt Società Italiana di Nutraceutica

Bologna

12-14 settembre 2024

	Mode of action	Ergogenic effects	Effective dosing regimen	Concerns and side effects
Caffeine	Central nervous stimulant, adenosine receptor antagonist	Reduces perception of fatigue; enhances endurance, repeated sprint performance, skill, and fine motor control; improves cognitive function	3-6 mg/kg b.w. as pill or powder consumed -60 min prior to exercise or lower doses (1-3 mg/kg b.w.) provided both before and during exercise, consumed with some carbohydrate	Highly individual response (both positive and negative) and side effects with high doses include anxiety, nausea, tremors, reduced sleep quality, tachycardia, and arrhythmias
Creatine	Increases muscle creatine stores, increasing the rate of resynthesis of phosphocreatine	Improves high-intensity repeated sprint performance, enhances training capacity and chronic training adaptations (muscle strength and power), and may also support brain function	Loading phase: -20 g/day for 5-7 days followed by mainte- nance phase of 3-5 g/day for the duration of the supplementa- tion period	Potential for 1-2 kg b.w. increase after creatine loading but lower doses (2-5 g/day) for 28 days may avoid the associated increase in body weight
β-alanine	Increases muscle carnosine, an important intracellular H ⁺ buffer	May improve high-intensity exercise and repeated sprint performance and may enhance training capacity	Daily consumption of ~6 g/day ingested via a split-dose regimen of -1.5 g every 3-4 hours over an extended supplement time frame of 4-12 weeks	Sprint training may be more effective to increase muscle buffering capacity. Possible skin rashes or transient paraesthesia (skin tingling)
Nitrate	Increases tissue nitrite and nitric oxide, which reduces the oxygen cost of exercise via enhanced muscle contraction efficiency and reduced ATP cost of force production	Improves economy, endurance, and intermittent high- intensity exercise performance in sub-elite athletes; less effective for the highly trained	Bolus nitrate dose of 5-9 mmol (310-560 mg) ingested (usually as beetroot juice concentrate) 2-3 hours before exercise; prolonged periods of nitrate intake (>3 days) may enhance effect	Beetroot juice may discolor urine

14° CONGRESSO NAZIONALE SINUT

Kreider et al. Journal of the International Society of Sports Nutrition (2017) 14:18
DOI 10.1186/s12970-017-0173-z

Journal of the International Society of Sports Nutrition

International Society of Sports Nutrition position stand: safety and efficacy of creatine supplementation in exercise, sport, and medicine

Richard B. Kreider^{1*}, Douglas S. Kalman², Jose Antonio³, Tim N. Ziegenfuss⁴, Robert Wildman⁵, Rick Collins⁶, Darren G. Candow⁷, Susan M. Kleiner⁸, Anthony L. Almada⁹ and Hector L. Lopez^{4,10}

Ergogenic Supplements Supported by Good Evidence of Efficacy

	Mode of action	Ergogenic effects	Effective dosing regimen	Concerns and side effects
Creatine	Increases muscle creatine stores, increasing the rate of resynthesis of phosphocreatine	Improves high-intensity repeated sprint performance, enhances training capacity and chronic training adaptations (muscle strength and power), and may also support brain function	Loading phase: -20 g/day for 5-7 days followed by mainte- nance phase of 3-5 g/day for the duration of the supplementa- tion period	Potential for 1-2 kg b.w. increase after creatine loading but lower doses (2-5 grday) for 28 days may avoid the associated increase in body weight

Creatine Myth or reality?

Creatine is one of the most popular supplements among athletes, and unlike many of the supplements on the market, it has an excellent evidence base for its positive effects on sports performance and metabolism.

Supplementing with creatine increases the amount of creatine in the body by up to 30%. There are many different types of creatine available on the market, but the simplest and most researched form is creatine monohydrate.

The standard dosing of creatine is 3-5g per day or 0.1 g/kg of body mass. Although many of the earliest studies used 'loading phases' of creatine of 20-30g per day to saturate stores quickly, smaller doses are equally effective, but simply take a little longer to build up in the body and have an effect.

12-14 settembre 2024 Bologna

Creatine Endurance Sport

Forbes et. al .Creatine supplementation and endurance performance: surges and sprints to win the race JOURNAL OF THE INTERNATIONAL SOCIETY OF SPORTS NUTRITION 2023, VOL. 20, NO. 1, 2204071

J. Fernandez-Landa et al. Effects of Creatine Monohydrate on Endurance Performance in a Trained Population: A Systematic Review and Meta-analysis

Van Loon LJ, Oosterlaar A, Hartgens F, Hesselink M, Snow R, Wagenmakers AJM. Effects of creatine loading and prolonged creatine supplementation on body composition, fuel selection, sprint and endurance performance in humans. Clin Sci. 104(2):153-62. 2003

Van Schuylenbergh R, Van Leemputte M, Hespel P. Effects of oral creatine-pyruvate supplementation in cycling performance. Int J Sports Med. 24(2):144-50, 2003

Reardon T, Ruell P, Fiatarone Singh M, Thompson C, Rooney K. Creatine supplementation does not enhance submaximal aerobic training adaptations in healthy young men and women. Eur J Appl Physiol. 98(3):234-41, 2006

The effects on endurance performance are less known. In terms of time trial performances, results are mixed.

Creatine supplementation elevates skeletal muscle phosphocreatine (PCr) stores facilitating a greater capacity to rapidly resynthesize ATP and buffer hydrogen ion accumulation. When co-ingested with carbohydrates, creatine enhances glycogen resynthesis and content, an important fuel to support high-intensity aerobic exercise. In addition, creatine has the potential to increase mitochondrial biogenesis. However, creatine supplementation appears to be more effective at improving performances that require multiple surges in intensity an Creatine supplementation may be beneficial for sports, such as crosscountry skiing, mountain biking, cycling, triathlon, and for short-duration events where end-spurts are critical for performance d/or during end spurts, which are often key racedefining moments.

In contrast, creatine supplementation increases body mass, which may offset the potential positive effects, particularly in weight-bearing activities and other Meta-analysis have shown that CM supplementation is ineffective on endurance performance in a trained population.

Creatine Intermittent Sport

Creatine supplementation is beneficial in sports involving intermittent high intensity exercise and has been shown to improve performance of measures like repeated sprint speed and jump height. These benefits are potentially helpful in common team sports like soccer, football or basketball. In these sports, the positive effects of creatine with resistance training on muscle mass and strength may also be beneficial.

Creatine is beneficial for intermittent high intensity sports as supplementation has been shown to improve performance of measures like repeated sprint speed and jump height.

Ramírez-Campillo R, González-Jurado JA, Martínez C, Nakamura FY, Peñailillo L, Meylan CMP, Caniuqueo A, Cañas-Jamet R, Moran J, Alonso-Martínez AM, Izquierdo M. Effects of plyometric training and creatine supplementation on maximal-intensity exercise and endurance in female soccer players. J Sci Med Sport. 19(8):682-7, 2016

Williams J, Abt G, Kilding A. Effects of Creatine Monohydrate Supplementation on Simulated Soccer Performance. Int J Sports Physiol Perform. 9(3):503-10, 2014

14° CONGRESSO NAZIONALE SINUT

Creatine Power and Strenght Sport

Creatine is a very popular supplement for strength and power athletes, where events generally last <30s. It can augment increases in muscle mass and strength during resistance training, as well as improve performance in competition. In such sports, the increase in body weight is generally not problematic, as the increase in performance more than compensates for the increased body mass. Such sports that benefit from creatine supplementation include 100m and 200m sprints, weightlifting and powerlifting and sprint swimming.

1.Butts J, Jacobs B, Silvis M. Creatine Use in Sports. Sports Health: A Multidisciplinary Approach. 10(1):31-4, 2018

Creatine and Brain

Roschel, H., Gualano, B., Ostojic, S. M., Rawson, E. S. Creatine supplementation and brain health. Nutrients2021;13(2), 586.

Dolan, E. Gualano, B., Rawson, E. S.Beyond muscle: the effects of creatine supplementation on brain creatine, cognitive processing, and traumatic brain injury.Eur J Sport Sci, 2019;19(1):1-14.

Aspects of cognitive performance improved in most studies
 Reduction of impact of concussion or improved recovery from

Creatine supplementation 'can' increase brain creatine levels ~ 5-10% across all populations and could also have a major impact on brain function, including improved cognitive processing and better recovery from brain injury and induces changes in cerebral high energy phosphates during sleep deprivation

concussion

The optimal dosing protocol is unknown.

14° CONGRESSO NAZIONALE SINUT

REVIEW

Open Access

Common questions and misconceptions about creatine supplementation: what does the scientific evidence really show?

Antonio et al. Journal of the International Society of Sports Nutrition (2021) 18:13

(1)Creatine supplementation does not always lead to water retention.

(2). Creatine is not an anabolic steroid.

(3). Creatine supplementation, when ingested at recommended dosages, does not result in kidney damage and/or renal dysfunction in healthy individuals.

(4). The majority of available evidence does not support a link between creatine supplementation and hair loss / baldness.

(5). Creatine supplementation does not cause dehydration or muscle cramping.

(6). Creatine supplementation appears to be generally safe and potentially beneficial for children and adolescents.

(7). Creatine supplementation does not increase fat mass.

(8). Smaller, daily dosages of creatine supplementation (3-5 g or 0.1 g/kg of body mass) are effective. Therefore, a creatine 'loading' phase is not required.

(9). Creatine supplementation and resistance training produces the vast majority of musculoskeletal and performance benefits in older adults. Creatine supplementation alone can provide some muscle and performance benefits for older adults.

(10).Creatine supplementation can be beneficial for a variety of athletic and sporting activities.

(11).Creatine supplementation provides a variety of benefits for females across their lifespan.

(12). Other forms of creatine are not superior to creatine monohydrate

Beta-alanine: the new creatine?

Ergogenic Supplements Supported by Good Evidence of Efficacy

	Mode of action	Ergogenic effects	Effective dosing regimen	Concerns and side effects
β-alanine	Increases muscle carnosine, an important intracellular H* buffer	May improve high-intensity exercise and repeated sprint performance and may enhance training capacity	Daily consumption of ~6 g/day ingested via a split-dose regimen of ~1.5 g every 3-4 hours over an extended supplement time frame of 4-12 weeks	Sprint training may be more effective to increase muscle buffering capacity. Possible skin rashes or transient paraesthesia (skin tingling)

Beta-alanine works by **elevating levels of carnosine in the body**. When beta-alanine is ingested, it combines with another amino acid L-histidine, forming carnosine. Carnosine acts as an intracellular proton buffer — it protects against drops in pH (increases in acidity).

Effects of beta-alanine on exercise performance?

Follow-up studies showed improvements in high intensity exercise performance. These improvements are generally seen during all-out exercise between 1 and 4 min of duration.

If the exercise is shorter, there does not seems to be a benefit and if the exercise is longer, the results seem a little more varied. Some studies (5-15 min) show benefits, others don't. If the exercise is much longer (1h or so) there don't seem to be benefits. Beta-alanine does not seem to help in team sports where the nature of the activity is more intermittent either.

Beta-alanine Myth or reality?

How should you use beta-alanine?

Typically, studies have used supplementing strategies of multiple doses of 400 mg or 800 mg, administered at regular intervals for up to eight hours (4-8 times a day), over periods ranging from 4 to 10 weeks. After a 10-week supplementing strategy, the reported increase in intramuscular carnosine content is on average about 80% (but the range is quite large: around 20 to 200%). Some athletes may therefore benefit more than others.

Is beta alanine safe?

It appears to be safe. It is a naturally occurring compound and there is only one side effect that is frequently reported. This side effect is paraesthesia, is a pricking, burning, tingling or numbing sensation that is usually felt in the arms, legs, hands, feet and nose. The exact reason why this happens is not clear but the effects wear off and there are no long term negative effects. Betaalanine usually comes in a slow release form, which means it is absorbed slower and over a longer period of time and this takes care of most of the symptoms. So if you use slow-release betaalanine you may not get any symptoms at all or at least they will be very much reduced.

Beta-alanine Myth or reality?

BETA ALANINE Prolonged Beta alanine ingestion

CARNOSINE

Increased muscle carnosine content

BUFFER CAPACITY Increased buffering capacity

PERFORMANCE

Improved performance in some sports

SPORTS

100 and 200 m swimming, 4-km time-trial cycling, 2000 m rowing, 800 m running Etc. Sprints at end of bike race?

In conclusion...

Whether or not beta-alanine can help the athletes performance, therefore depends very much on what the performance is. If your event is between 1-4 min in duration it seems to be worth a try. There are not many supplements that can be backed up by

- 1. Evidence of efficacy
- **2.** Multiple studies reproducing the effect

3. A clearly described and plausible physiological mechanism Beta-alanine has all of the above, although it may apply primarily to the window of 1-4 min as discussed.

No positive effects on body composition in terms of a decrease in FM (Fat Mass) and an increase in FFM (Fat Free Mass) have been documented.

No effective if used acutely (as pre work-out)

• It has been demonstrated that caffeine supplementation significantly improves various aspects of physical performance. The small to moderate benefits from caffeine use include muscle endurance, movement speed, muscle strength, sprint performance, jumps, throws, and a wide range of sport-specific aerobic and anaerobic actions

• Aerobic capacity seems to be the form of exercise with the most consistent benefits, ranging from moderate to large, derived from caffeine use, although the extent of its effects differs from individual to individual.

• It has been consistently shown that caffeine improves physical performance if consumed in doses of 3-6 mg/kg of body mass. The minimum effective doses of caffeine are currently unclear but could be as low as 2 mg/kg of body mass. Very high doses of caffeine (e.g., 9 mg/kg) are associated with a high incidence of side effects and do not seem necessary to elicit an ergogenic effect.

• The most commonly used timing for caffeine supplementation is 60 minutes before exercise. The optimal timing for caffeine intake probably depends on the source of the caffeine. For example, compared with caffeine capsules, caffeine chewing gums may require a shorter waiting time from consumption until the beginning of the training session.

• Caffeine seems to improve physical performance in both trained and untrained individuals.

Ergogenic Supplements Supported by Good Evidence of Efficacy

CARFEINE

	Mode of action	Ergogenic effects	Effective dosing regimen	Concerns and side effects
Caffeine	Central nervous stimulant, adenosine receptor antagonist	Reduces perception of fatigue: enhances endurance, repeated sprint performance, skill, and fine motor control; improves cognitive function	3-6 mg/kg b.w. as pill or powder consumed -60 min prior to exercise or lower doses (1-3 mg/kg b.w.) provided both before and during exercise, consumed with some carbohydrate	Highly individual response (both positive and negative) and side effects with high doses include anxiety, nausea, tremors, reduced sleep quality, tachycardia, and arrhythmias

Interindividual differences in sport and physical performance, as well as adverse effects on sleep or feelings of anxiety following caffeine ingestion, can be attributed to genetic variation associated with caffeine metabolism and physical and psychological response. Other factors, such as habitual caffeine intake, may also play a role in individual response variation.

It has been demonstrated that caffeine is ergogenic for cognitive functions, including attention and vigilance, in most individuals.

Caffeine may improve cognitive and physical performance in some individuals under conditions of sleep deprivation.

The use of caffeine together with endurance exercises in heat and at altitude is well supported when dosages vary respectively from 3 to 6 mg/kg and 4-6 mg/kg.

It has been demonstrated that alternative sources of caffeine, such as caffeine-containing chewing gums, mouth rinses, energy gels, and chewing gums, improve performance, mainly in aerobic exercise.

It has been demonstrated that energy drinks and pre-workout supplements containing caffeine improve both anaerobic and aerobic performance.

12-14 settembre 2024 Bologna

		%
Study	SMD (95% CI)	Weight
Astorino et al. [43]	-0.13 (-1.12, 0.85)	2.33
Skinner et al. [55]	-0.07 (-0.81, 0.67)	4.09
Bortolotti et al. [42]	-0.06 (-0.83, 0.71)	3.80
Skinner et al. [55]	-0.06 (-0.80, 0.68)	4.09
Skinner et al. [41]	0.06 (-0.82, 0.93)	2.92
Astorino et al. [43]	0.08 (-0.91, 1.06)	2.33
Christensen et al. [72]	0.11 (-0.69, 0.91)	3.50
Skinner et al. [41]	0.11 (-0.76, 0.99)	2.92
Carr et al. [47]	0.12 (-0.86, 1.10)	2.33
Astorino et al. [43]	0.12 (-0.86, 1.10)	2.33
Black et al. [73]	0.13 (-0.61, 0.87)	4.08
Astorino et al. [54]	0.14 (-0.78, 1.07)	2.62
Saunders et al. [74]	0.17 (-0.26, 0.59)	12.23
Wallman et al. [75]	0.19 (-0.69, 1.07)	2.91
Acker-Hewitt et al. [46]	0.19 (-0.69, 1.07)	2.90
Kilding et al. [51]	0.20 (-0.68, 1.08)	2.90
Beaumont and James [76]	0.21 (-0.77, 1.20)	2.32
Ganio et al. [77]	0.22 (-0.62, 1.06)	3.19
Laurence et al. [78]	0.23 (-0.57, 1.03)	3.48
Irwin et al. [59]	0.25 (-0.56, 1.05)	3.47
Quinlivan et al. [61]	0.25 (-0.59, 1.09)	3.18
Walker et al. [64]	0.26 (-0.67, 1.19)	2.60
Collomp et al. [79]	0.31 (-0.67, 1.30)	2.30
Astorino et al. [43]	0.32 (-0.67, 1.31)	2.30
Astorino et al. [54]	0.32 (-0.61, 1.25)	2.59
Glaister et al. [63]	0.41 (-0.34, 1.16)	3.99
lenkins et al. [80]	0.53 (-0.26, 1.31)	3.65
Dean et al. [52]	- 0.58 (-0.43, 1.58)	2.21
de Santos et al. [62]	0.65 (-0.37, 1.66)	2.19
Hodgson et al. [67]	0.90 (-0.14, 1.94)	2.06
Felippe et al. [68]	1.74 (0.73, 2.75)	2.20
Overall (I-squared = 0.0%, p = 0.989)	0.24 (0.09, 0.39)	100.00
NOTE: Weights are from random effects analysis		
0.75	0.75	
-2.(5)	2.75	

Sports Med https://doi.org/10.1007/s40279-018-0939-8

SYSTEMATIC REVIEW

The Effect of Acute Caffeine Ingestion on Endurance Performance: A Systematic Review and Meta–Analysis

Kyle Southward¹ · Kay J. Rutherfurd-Markwick^{2,3} · Ajmol Ali^{1,3}

Key Points

This systematic review and meta-analysis investigated the effects of caffeine on endurance performance.

The results showed that caffeine has a small but positive effect on endurance time-trial performance.

However, differences between studies in response to caffeine were evident as some studies reported ergolytic effects following caffeine ingestion.

		76
Study	SMD (95% CI)	Weigh
Roelands et al. [37]	-0.24 (-1.22, 0.75)	1.86
Cohen et al. [38]	-0.01 (-1.06, 1.03)	1.75
MacIntosh and Wright [39]	0.01 (-0.76, 0.78)	2.28
lacobson et al [40]	0.03 (-0.95, 1.01)	1.87
Skipper et al. [41]	0.05 (-0.82, 0.93)	2.06
Bortolotti et al. [42]	0.06 (-0.71, 0.82)	2.28
Astorino et al [43]	0.08 (-0.90, 1.06)	1.87
Potgieter et al. [44]	0.10 (-0.45, 0.64)	2.77
Stadheim et al. [45]	0.10 (-0.67, 0.87)	2.28
Skinner et al. [41]	0.12 (-0.93, 1.17)	1.75
Cohen et al [29]	0.11 (-0.76, 0.99)	2.06
Acker-Hewitt et al. [46]	0.12 (-0.86, 1.10)	1.86
Acker-Hewitt et al. [46]	0.13 (-0.49, 0.75)	2.60
Carretal. [47]	0.12 (-0.76, 1.00)	2.06
Church et al. [48]	0.15 (-0.56, 0.87)	2.39
O'Rourke et al. [49]	0.18 (-0.80, 1.16)	1.86
O'Rourke et al. [49]	0.17 (-0.71, 1.05)	2.06
Desbrow et al. [50]	0.16 (-0.56, 0.88)	2.39
Kilding et al. [51]	0.16(-0.77, 1.09)	1.97
Jacobson et al. [40]	0.19(-0.58, 0.96)	2.28
Dean et al. [52]	0.22(-0.77, 1.20)	1.86
Bell et al. [53]	0.26(-0.55, 1.06)	2 21
Astorino et al. [43]	0.26(-0.72, 1.25)	1.86
Astorino et al. [54]	0.27 (-0.66, 1.20)	1.96
Astorino et al. [43]	0.27 (-0.72, 1.25)	1.86
Skinner et al. [55]	0.27(-0.48, 1.01)	2 33
Womack et al. [56]	- 0.30 (-0.34, 0.94)	2.56
Astorino et al. [43]	0.35(-0.35,1.05)	2 43
Astorino et al. [54]	0.33 (-0.61, 1.26)	1.95
Desbrow et al. [57]	0.32(-0.66, 1.31)	1.85
de Souza Goncalves et al. [58]	0.36 (-0.08, 0.80)	2 99
Irwin et al. [59]	0.39 (-0.46, 1.23)	2.12
Graham-Paulson et al. [60]	0.38 (-0.43, 1.19)	2 20
Quinlivan et al. [61]	0.49 (-0.27, 1.24)	2.31
de Santos et al. [62]	0.43 (-0.42, 1.28)	2.12
Glaister et al. [63]	0.46 (-0.54, 1.46)	1.84
Desbrow et al. [57]	0.51(-0.20, 1.21)	2.42
Walker et al. [64]	0.58 (-0.37, 1.53)	1.92
Skinner et al. [55]	0.63(-0.13, 1.39)	2 29
Pitchford et al. [65]	0.85 (0.13, 1.58)	2.37
Womack et al. [56]	0.81 (-0.16, 1.78)	1.88
Stadbeim et al. [66]	1 00 (-0.05, 2.06)	1.73
Hodgson et al. [67]	0.96 (0.02, 1.89)	1.94
Foliope et al. [69]	1 27 (0 34 2 21)	1.04
Coviet al [60]	1.38 (0.47 2.28)	2.00
Cox et al. [09]	1 44 (0 30 2 58)	1.61
Conway et al. [70] Guest et al. [71]	2 23 (1 88 2 58)	3.17
	0 41 (0 22 0 61)	100.00
Overall (I-squared = 63.7%, p=0.000)	0.41 (0.22, 0.01)	100.00

SINUt societi Italiana di Nutracentea 12-14 settembre 2024 Bologna

Sports Medicine (2019) 49:17–30 https://doi.org/10.1007/s40279-018-0997-y

REVIEW ARTICLE

The Influence of Caffeine Supplementation on Resistance Exercise: A Review

Jozo Grgic¹ · Pavle Mikulic² · Brad J. Schoenfeld³ · David J. Bishop^{1,4} · Zeljko Pedisic¹

Key Points

Caffeine supplementation may acutely enhance muscular endurance, maximal strength, and power in resistance exercise.

Doses in the range of $3-9 \text{ mg} \cdot \text{kg}^{-1}$ seem to be adequate for eliciting ergogenic effects. Caffeine seems to be generally safe when taken in these doses; however, at doses as high as $9 \text{ mg} \cdot \text{kg}^{-1}$ or higher, side effects might be more pronounced.

Blood pressure may be increased following caffeine ingestion, and therefore caution is needed regarding caffeine supplementation among individuals with high blood pressure.

The mechanism by which caffeine intake affects resistance exercise performance is likely multifactorial. López-González et al. Journal of the International Society of Sports Nutrition (2018) 15:60 https://doi.org/10.1186/s12970-018-0267-2 Journal of the International Society of Sports Nutrition

REVIEW

Acute caffeine supplementation in combat

Luis M. López-González¹, Antonio J. Sánchez-Oliver^{2,3}*⁽²⁾, Fernando Mata¹, Pablo Jodra⁴, Jose Antonio⁵ and Raúl Domínguez⁶

Conclusions and practical applications

Caffeine doses of 3–6 mg/kg have been associated with increased glycolytic activity during real or simulated combats. This effect is accompanied by increased blood lactate concentrations and improved performance, as measured through the engagement time or number of throws performed in a contest. In addition, the higher rate of glycolysis takes place in the absence of a concomitant increase in the level of exertion perceived by the athlete. By way of conclusion, caffeine supplementation could have an ergogenic effect in combat sport practitioners and thus improve performance indicators such as hand grip strength and the strength, power and muscular endurance of the arms.

Journal of Science and Medicine in Sport

Contents lists available at ScienceDirect

Journal of Science and Medicine in Sport 22 (2019) 353-360

journal homepage: www.elsevier.com/locate/jsams

Review

The effects of caffeine ingestion on isokinetic muscular strength: A meta-analysis

Jozo Grgic^{a,*}, Craig Pickering^{b,c}

5. Conclusion

In conclusion, this meta-analysis demonstrates that acute caffeine ingestion may lead to significant increases in isokinetic strength performance. Additionally, this meta-analysis reports that the effects of caffeine on isokinetic muscular strength are predominantly manifested in knee extensor muscles and at higher angular velocities. Finally, these conclusions are based on studies with excellent to good methodological quality, and on analyses with low levels of heterogeneity.

Additive Effect of Combining Different Substances

Combing Caffeine + Taurine has been reported to increase alertness, aerobic and anaerobic performance, reaction time and upper body strenght in several studies

Caffeine + Carbohydrate during exercise has been shown to be more effective in improving endurance exercise performance than either caffeine or carbohydrate alone.

It seems that in order to see the effects of caffeine on carbohydrate absorption, a large dose of caffeine is needed. Such high intakes are not recommended because of increased side effects. The lower dose is effective in improving performance but it does not seem to do so by enhancing carbohydrate use. With highly individual responses to caffeine, the recommendation is that athletes experiment with lower doses and work out what works best for them.

Review Open Access Published: 09 October 2021

Effect of dietary nitrate on human muscle power: a systematic review and individual participant data meta-analysis

Andrew R. Coggan , Marissa N. Baranauskas, Rachel J. Hinrichs, Ziyue Liu & Stephen J. Carter Journal of the International Society of Sports Nutrition 18, Article number: 66 (2021) Cite this article

Ergogenic Supplements Supported by Good Evidence of Efficacy

	Mode of action	Ergogenic effects	Effective dosing regimen	Concerns and side effects
Nitrate	Increases tissue nitrite and nitric oxide, which reduces the oxygen cost of exercise via enhanced muscle contraction efficiency and reduced ATP cost of force production	Improves economy, endurance, and intermittent high- intensity exercise performance in sub-elite athletes; less effective for the highly trained	Bolus nitrate dose of 5-9 mmol (310-560 mg) ingested (usually as beetroot juice concentrate) 2-3 hours before exercise; prolonged periods of nitrate intake (>3 days) may enhance effect	Beetroot juice may discolor urine

Beetroot Juice Myth or reality?

High-intensity intermittent exercise performance might be positively impacted by nitrate

Dietary nitrate enhances repeated sprint performance and may attenuate the decline in cognitive function (and specifically reaction time) that may occur during prolonged intermittent exercise.

The effects are likely to be greater if beetroot juice is consumed for several days prior to a competition but there are acute effects too and I would recommend taking nitrate 2-3 hours prior to competition.

The performance benefits are particularly seen during allout exercise lasting 5-30 min.

Take Home Message

Any use of performance supplements should be thoroughly trialed in training before implementation into a competition environment, since, in some scenarios, outcomes ranging from a lack of efficacy to deleterious responses may outweigh any expected performance enhancement. 12-14 settembre 2024 Bologna

