

# Università degli Studi del Molise

Via De Sanctis - 86100 Campobasso - Tel. +39 0874 4041





Consiglio Nazionale delle Ricerche Istituto di Scienze Neurologiche

Blanchette Rockefeller Neurosciences Institute West Virginia University

# Estendere l'invecchiamento in salute: vie metaboliche sensibili ai nutrienti e popolazioni centenarie

Giovanni Scapagnini, MD, PhD



Seals DR and Melov S. Translational Geroscience: Emphasizing function to achieve optimal longevity. Aging 2014, 6: 718-730



# Oxidation and Inflammation The link with age related chronic diseases







# AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network Ageing Research Reviews 11 (2012) 230– 241

Antero Salminen<sup>a,b,\*</sup>, Kai Kaarniranta<sup>c,d</sup>



# Dr. Nir Barzilai on the TAME Study



We hypothesize that delaying aging is the only effective way to delay age-related diseases and compress morbidity. TAME is a novel study that will recruit elderly subjects and, in a double-blind, placebo-control study, will test if metformin can delay the onset of multi-morbidities including cancer, CVD, T2DM, cognitive decline, and mortality. It is sponsored by the American Federation for Aging Research (AFAR), and I will serve as the PI. There is a wide range of involvement of gerontologists and intervention geriatricians in an executive committee and consensus committee as well as other investigators.

### Metformin

Do we finally have an anti-aging drug?

Cell Cycle 12:22, 3483-3489; November 15, 2013;

#### Vladimir N Anisimov

Department of Carcinogenesis and Oncogerontology; N.N. Petrov Research Institute of Oncology; St. Petersburg, Russia

# Nutrients acts as dietary signals



#### EDITORIAL

#### **Open Access**



# Nutrigerontology: a key for achieving successful ageing and longevity

Anna Aiello<sup>1</sup>, Giulia Accardi<sup>1</sup>, Giuseppina Candore<sup>1</sup>, Giuseppe Carruba<sup>2</sup>, Sergio Davinelli<sup>3</sup>, Giuseppe Passarino<sup>4</sup>, Giovanni Scapagnini<sup>3</sup>, Sonya Vasto<sup>5</sup> and Calogero Caruso<sup>1\*</sup>

#### Abstract

During the last two centuries the average lifespan has increased at a rate of approximately 3 months/year in both sexes, hence oldest old people are becoming the population with the fastest growth in Western World. Although the average life expectancy is increasing dramatically, the healthy lifespan is not going at the same pace. This underscores the importance of studies on the prevention of age-related diseases, in order to satisfactorily decrease the medical, economic and social problems associated to advancing age, related to an increased number of individuals not autonomous and affected by invalidating pathologies. In particular, data from experimental studies in model organisms have consistently shown that nutrient signalling pathways are involved in longevity, affecting the prevalence of age-related loss of function, including age-related diseases. Accordingly, nutrigerontology is defined as the scientific discipline that studies the impact of nutrients, foods, macronutrient ratios, and diets on lifespan, ageing process, and age-related diseases. To discuss the potential relevance of this new science in the attainment of successful ageing and longevity, three original studies performed in Sicily with local foods and two reviews have been assembled in this series. Data clearly demonstrate the positive effects of nutraceuticals, functional foods and Mediterranean Diet on several biological parameters. In fact, they could represent a prevention for many age-related diseases, and, although not a solution for this social plague, at least a remedy to alleviate it. Thus, the possibility to create a dietary pattern, based on the combined strategy of the use of both nutraceuticals and functional foods should permit to create a new therapeutic strategy, based not only on a specific bioactive molecule or on a specific food but on a integrated approach that, starting from the local dietary habits, can be led to a "nutrafunctional diet" applicable worldwide.

Keywords: Ageing, Longevity, Mediterranean Diet, Nutraceuticals, Nutrigerontology, Phytochemicals

EMBO reports VOL 13 | NO 3 | 2012





# 'Positive biology' as a new paradigm for the medical sciences

Focusing on people who live long, happy, healthy lives might hold the key to improving human well-being *Colin Farrelly* 

Eliminating all types of cancer would increase life expectancy in the USA by approximately only three years



### Long living animals



# Proteus anguinus Laurenti > 100 years



Heterocephalus glaber > 32 years

### **Short living animals**



Notobranchius furzeri < 12 weeks



HIV transgenic rat < 1 year

Centenarians are a great model of Positive Biology Study the escapers to keep their secret of long life



Mechanisms of Ageing and Development 136-137 (2014) 148-162

Healthy aging diets other than the Mediterranean: A focus on the Okinawan diet

Donald Craig Willcox<sup>a,b,c,\*</sup>, Giovanni Scapagnini<sup>d</sup>, Bradley J. Willcox<sup>b,c</sup>

REJUVENATION RESEARCH Volume 15, Number 2, 2012 © Mary Ann Liebert, Inc. DOI: 10.1089/rej.2011.1280

> Mediterranean Diet and Longevity in Sicily: Survey in a Sicani Mountains Population

Sonya Vasto,<sup>1</sup> Giovanni Scapagnini,<sup>2</sup> Claudia Rizzo,<sup>2</sup> Roberto Monastero,<sup>3</sup> Antonio Marchese,<sup>4</sup> and Calogero Caruso<sup>1</sup>









# JAPAN Tokyo

### Pacific Ocean





#### The New York Times Bestseller

How the world's LONGEST-LIVED people achieve EVERLASTING HEALTHand how you can too



LEARN THE SECRETS TO HEALTHY LONGEVITY: If Ways to Eliminate Excess Calories 10 Healing Tools and Herbs 4 Keys to Becaming and Starfing Optimistic Tays for Achieving a Healthy Frontin Balance ... and much more

BRADEFYJ, WILLCOX, M.D., D. CRAIGWILLCOX, Ph.D. and MARCITO SUZUKI, M.D. FOREWORD, BY ANDREW WEIL, M.D.





# In Okinawa, centenarian ratios may be the world's highest at approximately 50 per 100,000 population





Almost 1000 Okinawan centenarians and numerous other elderly in their seventies, eighties, and nineties, have been studied from 1975





Sources: Yamada, M., et al. J Am Geriatr Soc 1999;47:189-95. Kokmen, E., et al. Mayo Clin Proc 1996;71:275-82. Ogura, C., et al. Internatl J Epidemiol 1995;24:373-80.

### **Gene Varient in Insulin Signaling Pathway Strongly Associated with Healthy Aging and Longevity** (Willcox et al. Proc Nat Acad Sci 2008)



of

and

and

the



### The FoxO3 gene and cause-specific mortality

Bradley J. Willcox, <sup>1,2</sup> Gregory J. Tranah,<sup>3</sup> Randi Chen,<sup>1</sup> Brian J. Morris, <sup>1,2,4</sup> Kamal H. Masaki, <sup>1,2</sup> Qimei He,<sup>1</sup> D. Craig Willcox, <sup>1,2,5</sup> Richard C. Allsopp,<sup>6</sup> Stefan Moisyadi,<sup>6</sup> Leonard W. Poon,<sup>7</sup> Beatriz Rodriguez, <sup>1,2</sup> Anne B. Newman,<sup>8</sup> Tamara B. Harris,<sup>9</sup> Steven R. Cummings,<sup>3</sup> Yongmei Liu,<sup>10</sup> Neeta Parimi,<sup>3</sup> Daniel S. Evans,<sup>3</sup> Phil Davy,<sup>6</sup> Mariana Gerschenson<sup>11</sup> and Timothy A. Donlon<sup>1</sup>

| Japanese   | Whites     | Blacks             |
|------------|------------|--------------------|
| (n = 3584) | (n = 1794) | ( <i>n</i> = 1281) |

The G allele of the FOXO3 single nucleotide polymorphism (SNP) rs2802292 exhibits a consistently replicated genetic association with longevity in multiple populations worldwide. The aims of this study were to quantify the mortality risk for the longevity associated genotype and to discover the particular cause(s) of death associated with this allele. We found G allele carriers had a combined (Japanese, white, and black populations) risk reduction of 10% for total (all-cause) mortality (HR = 0.90; 95% CI, 0.84–0.95; P = 0.001). This effect size was consistent across populations and mostly contributed by 26% lower risk for CHD death (HR = 0.74; 95% CI, 0.64–0.86; P = 0.00004).

| (A)                                          |               |                  |                 |  |  |  |
|----------------------------------------------|---------------|------------------|-----------------|--|--|--|
| Cause of death                               | No. of deaths | HR* (95% CI)     | <i>P</i> -value |  |  |  |
| Cancer                                       | 546           | 1.01 (0.85–1.19) | 0.93            |  |  |  |
| CHD (coronary heart disease)                 | 524           | 0.75 (0.63-0.90) | 0.001           |  |  |  |
| Stroke                                       | 315           | 0.97 (0.77-1.21) | 0.76            |  |  |  |
| Dementia                                     | 221           | 1.01 (0.78-1.32) | 0.93            |  |  |  |
| Other cardiovascular disease (CVD)           | 213           | 0.85 (0.65-1.11) | 0.23            |  |  |  |
| Infectious disease                           | 188           | 0.91 (0.68-1.21) | 0.52            |  |  |  |
| Chronic obstructive pulmonary disease (COPD) | 117           | 0.83 (0.57-1.19) | 0.31            |  |  |  |
| Renal failure                                | 45            | 0.86 (0.48-1.55) | 0.61            |  |  |  |
| GI (gastrointestinal disease)                | 39            | 1.22 (0.65-2.30) | 0.54            |  |  |  |
| Other deaths                                 | 480           | 0.86 (0.72–1.03) | 0.09            |  |  |  |



#### REVIEW

### Long live FOXO: unraveling the role of FOXO proteins in aging and longevity



# **Conserved Nutrient Signaling Pathways Regulating Longevity**



### **Caloric Restriction : Most Powerful Anti-Aging Intervention**

Caloric restriction reduces age-related and all-cause mortality in rhesus monkeys. Colman RJ, Beasley TM, Kemnitz JW, Johnson SC, Weindruch R, Anderson RM. Nat Commun. 2014 Apr 1;5:3557



# Oxidative Stress and Longevity in Okinawa: An Investigation of Blood Lipid Peroxidation and Tocopherol in Okinawan Centenarians

Current Gerontology and Geriatrics Research Volume 2010, Article ID 380460

### Makoto Suzuki,<sup>1, 2, 3</sup> D. Craig Willcox,<sup>1, 2, 4</sup> Matthew W. Rosenbaum,<sup>1</sup> and Bradley J. Willcox<sup>1, 4, 5, 6, 7</sup>

|            | 20s             | 30s             | 70s             | 80s             | 100s            |
|------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Male       | $3.34 \pm 1.79$ | $4.06 \pm 1.24$ | $3.15\pm0.70$   | $2.92 \pm 0.32$ | $1.49\pm0.51$   |
| <i>(n)</i> | (4)             | (8)***          | $(11)^{***}$    | (5)***          | (30)            |
| Female     | $3.18 \pm 0.64$ | $2.95 \pm 0.53$ | $3.56 \pm 0.81$ | $2.90 \pm 0.46$ | $1.72\pm1.28$   |
| <i>(n)</i> | $(4)^{*}$       | $(8)^{**}$      | $(18)^{***}$    | (3)             | (109)           |
| Total      | $3.30 \pm 1.25$ | $3.51 \pm 1.08$ | $3.40\pm0.79$   | $2.91 \pm 0.34$ | $1.67 \pm 1.16$ |
| <i>(n)</i> | $(8)^{***}$     | $(16)^{***}$    | (29)***         | $(8)^{***}$     | (139)           |

TABLE 1: Plasma lipid peroxide in young, middle-aged, and older age groups (mean and SD), nmol/ml. LPO levels were measured using the TBA method [21, 22].

Significant difference between centenarians and particular age group: \*P < .05, \*\*P < .01, \*\*\*P < .001.

*Conclusions*. The low plasma level of LPO in Okinawan centenarians, compared to younger controls, argues for protection against oxidative stress in the centenarian population and is consistent with the predictions of the Free Radical Theory of Aging.

Mechanisms of Ageing and Development 136-137 (2014) 148-162

Healthy aging diets other than the Mediterranean: A focus on the Okinawan diet

Donald Craig Willcox<sup>a,b,c,\*</sup>, Giovanni Scapagnini<sup>d</sup>, Bradley J. Willcox<sup>b,c</sup>

## **Key Features of Traditional Okinawa Diet**

- 1) Low Caloric Density (plant-based, low fat, moderate protein from soy, fish, lean meats)
- 2) High Nutrient Density (Vitamins A,C, E, potassium, magnesium, folate, and healthy oils)
- 3) Phyto-nutrient Rich (polyphenols, carotenoids mostly from green leafy, yellow root vegetables and seaweed)
- 4) Low in Glycemic Load (high quality carbohydrates from staple sweet potato)
- 5) Anti-inflammatory (CR, polyphenols, omega 3 fatty acids)



Traditional Okinawan diet food pyramid



# Extending healthy ageing: nutrient sensitive pathway and centenarian population



### Sergio Davinelli<sup>1</sup>, D Craig Willcox<sup>2</sup>, Giovanni Scapagnini<sup>1\*</sup>

1 Department of Health Sciences, University of Molise, Campobasso, Italy

2 Department of Human Welfare, Okinawa International University, Ginowan, Japan

\* Corresponding author

### Abstract

Ageing is a challenge for any living organism and human longevity is a complex phenotype. With increasing life expectancy, maintaining long-term health, functionality and well-being during ageing has become an essential goal. To increase our understanding of how ageing works, it may be advantageous to analyze the phenotype of centenarians, perhaps one of the best examples of successful ageing. Healthy ageing involves the interaction between genes, the environment, and lifestyle factors, particularly diet. Besides evaluating specific gene-environment interactions in relation to exceptional longevity, it is important to focus attention on modifiable lifestyle factors such as diet and nutrition to achieve extension of health span. Furthermore, a better understanding of human longevity may assist in the design of strategies to extend the duration of optimal human health. In this article we briefly discuss relevant topics on ageing and longevity with particular focus on dietary patterns of centenarians and nutrient-sensing pathways that have a pivotal role in the regulation of life span. Finally, we also discuss the potential role of Nrf2 system in the pro-ageing signaling emphasizing its phytohormetic activation.

Davinelli et al. Immunity & Ageing 2012

Healthy aging diets other than the Mediterranean: A focus on the Okinawan diet. Willcox DC, Scapagnini G, Willcox BJ. Mech Ageing Dev. 2014 Jan 21.

### **Curcuma longa**

### Ipomoera batatas cultivar Ayamurasaki

### Wakame Undaria pinnatifida













Curcumin

### Anthocyanin

### Phlorotannin

# POLYPHENOLS





### Major pathways activated by polyphenols



"The xenohormesis hypothesis": organisms have evolved to respond to stress signaling molecules produced by other species in their environment.



Lamming DW, Wood JG, Sinclair DA. Small molecules that regulate lifespan: evidence for xenohormesis. Molecular Microbiology (2004)

# Dietary phytochemicals and neuroinflammaging: from mechanistic insights to translational challenges



Sergio Davinelli<sup>1\*</sup>, Michael Maes<sup>2,3</sup>, Graziamaria Corbi<sup>1</sup>, Armando Zarrelli<sup>4</sup>, Donald Craig Willcox<sup>5,6</sup> and Giovanni Scapagnini<sup>1</sup>



Stress Response Pathways

# Scapagnini G, Colombrita C, Amadio M, D'Agata V, Arcelli E, Sapienza M, Quattrone A, Calabrese V.

# Curcumin activates defensive genes and protects neurons against oxidative stress.

CH<sub>3</sub> C

### Antioxid Redox Signal. 2006 Mar-Apr;8(3-4):395-403.

Institute of Neurological Sciences, National Research Council (CNR), Catania, Italy., Blanchette Rockefeller Neurosciences Institute, West Virginia University, Rockville, Maryland.



Curcumin powder

Effect of curcumin and SNAP on HO-1 protein expression in astrocytes



Control



SNAP 0.5 mM (6h)



# HO OH CURCUMIN

O CH





### **Curcumin activates Nrf2 expression and stimulates ARE-binding activity**



Motterlini R. et al. Biochem J. 2003



# Multi-organ protection by the Nrf2 pathway



# Regulation of Nrf2 signaling and longevity in naturally long-lived rodents

Kaitlyn N. Lewis<sup>a,b</sup>, Emily Wason<sup>c</sup>, Yael H. Edrey<sup>b,c</sup>, Deborah M. Kristan<sup>d</sup>, Eviatar Nevo<sup>e</sup>, and Rochelle Buffenstein<sup>a,b,c,1</sup>

<sup>a</sup>Departments of Cellular and Structural Biology and <sup>c</sup>Physiology and <sup>b</sup>Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229; <sup>d</sup>Department of Biological Sciences, California State University, San Marcos, CA 92096; and <sup>e</sup>Institute of Evolution, University of Haifa, Haifa 31905, Israel



#### 3722–3727 | PNAS | March 24, 2015 | vol. 112 | no. 12

#### Naked mole-rat constitutive Nrf2 upregulation





### Altered expression pattern of Nrf2/HO-1 axis during accelerated-senescence in HIV-1 transgenic rat

Biogerontology Received: 25 January 2014/Accepted: 23 June 2014

Sergio Davinelli · Giovanni Scapagnini · Frank Denaro · Vittorio Calabrese · Francesca Benedetti · Selvi Krishnan · Sabrina Curreli · Joseph Bryant · Davide Zella





Received: 30 November 2010 / Accepted: 4 April 2011 © Springer Science+Business Media, LLC 2011

nutritional

Galvano F.

Abstract In recent years, there has been a growing interest, supported by a large number of experimental and epidemiological studies, for the beneficial effects of some phenolic substances, contained in commonly used spices and herbs, in preventing various age-related pathologic conditions, ranging from cancer to neurodegenerative diseases. Although the exact mechanisms by which polyphenols promote these effects remain to be elucidated, several reports have shown their ability to stimulate a general xenobiotic response in the target cells, activating multiple defense genes. Data from our and other laboratories have previously demonstrated that curcumin, the yellow pigment of curry, strongly induces heme-oxygenase-1 (HO-1) expression and activity in different brain cells via the

neurodegenerative disorders.

Mol Neurobiol. 2011 Oct;44(2):192-201.

G. Scapagnini (🖂) Department of Health Sciences, University of Molise, Campobasso, Italy e-mail: gscapag@gmail.com

activation of heterodimers of NF-E2-related factors 2

Modulation of Nrf2/ARE pathway by food polyphenols: a

Scapagnini G, Vasto S, Abraham NG, Caruso C, Zella D,

neuroprotective strategy for cognitive





and

(Nrf2)/antioxidant responsive element (ARE) pathway. Many studies clearly demonstrate that activation ofNrf2 target genes, and particularly HO-1, in astrocytes and neurons is strongly protective against inflammation, oxidative damage, and cell death. In the central nervous system, the HO system has been reported to be very active, and its modulation seems to play a crucial role in the pathogenesis of neurodegenerative disorders. Recent and unpublished data from our group revealed that low concentrations of epigallocatechin-3-gallate, the major green tea catechin, induces HO-1 by ARE/Nrf2 pathway in hippocampal neurons, and by this induction, it is able to protect neurons against different models of oxidative damages. Furthermore, we have demonstrated that other phenolics, such as caffeic acid phenethyl ester and ethyl ferulate, are also able to protect neurons via HO-1 induction. These studies identify a novel class of compounds that could be used for therapeutic purposes as preventive agents against cognitive decline.



### Sulforaphane and Other Nutrigenomic Nrf2 Activators: Can the Clinician's Expectation Be Matched by the Reality?

Oxidative Medicine and Cellular Longevity

Christine A. Houghton, Robert G. Fassett, and Jeff S. Coombes







Volume 2016

CDvalues of popular phytochemicals used as supplements and a commonly prescribed pharmaceutical. CD values refer to the concentration of a compound required to double the activity of the Phase II detoxification enzyme, quinone reductase Comparative bioavailability of phytochemicals commonly used in supplements

CrossMark

### Caffeic Acid Phenethylester Increases Stress Resistance and Enhances Lifespan in *Caenorhabditis elegans* by Modulation of the Insulin-Like DAF-16 Signalling Pathway

#### Susannah Havermann<sup>1,2,3</sup>, Yvonni Chovolou<sup>1</sup>, Hans-Ulrich Humpf<sup>2</sup>, Wim Wätjen<sup>1,3</sup>\*

1 Institute of Toxicology, Heinrich-Heine-Universität, Düsseldorf, Germany, 2 Institute of Food Chemistry, Westfälische Wilhelms-Universität, Münster, Germany, 3 Institute of Agricultural and Nutritional Sciences, Martin-Luther-Universität Halle-Wittenberg, Halle/Saale, Germany





Research report

Journal of Affective Disorders 167 (2014) 368-375

CrossMark

Curcumin for the treatment of major depression: A randomised, double-blind, placebo controlled study

Adrian L. Lopresti <sup>a,\*</sup>, Michael Maes <sup>b,c</sup>, Garth L. Maker <sup>d</sup>, Sean D. Hood <sup>e</sup>, Peter D. Drummond <sup>a</sup>



# Sulforaphane treatment of autism spectrum disorder (ASD) PNAS | October 28, 2014 | vol. 111 | no. 43

Kanwaljit Singh<sup>a,b</sup>, Susan L. Connors<sup>a</sup>, Eric A. Macklin<sup>c</sup>, Kirby D. Smith<sup>d</sup>, Jed W. Fahey<sup>e</sup>, Paul Talalay<sup>e,1</sup>, and Andrew W. Zimmerman<sup>a,b,1</sup>





### Down-Regulated NF-E2–Related Factor 2 in Pulmonary Macrophages of Aged Smokers and Patients with Chronic Obstructive Pulmonary Disease

Masaru Suzuki1, Tomoko Betsuyaku1, Yoko Ito1, Katsura Nagai1, Yasuyuki Nasuhara1, Kichizo Kaga2, Satoshi Kondo2, and Masaharu Nishimura1 Macrophages

Am J Respir Cell Mol Biol Vol 39. pp 673–682, 2008

Acute cigarette smoke exposure leads to Nrf2 activation in human macrophages, andNrf2 expression is decreased in pulmonary macrophages in current smokers and patients with COPD.

Nrf2 immunohistochemistry in human alveolar macrophages



Lifelong nonsmokers



GOLD stage I COPD



€ 0000

0

8

Control

subjects

Macrophage Nrf2 mRNA, fold increase

1.5

1

.5

p = 0.001

 $\bigcirc$ 

Subjects

with COPD

GOLD stage IV COPD

### Pilot study on 30 COPD patients (age 63.3 ± 7.9)

•Patients were evaluated at baseline (time 0, T0) and after 12 weeks (time 1, T1) of oral administration of a mix of **curcumin/carnosol/piperine** once a day.

•At each visit were collected EBC samples, clinical (breath, cough, sputum and night awakening, BSCN score, CAT score and MMSE) data and spirometry. In 14 patients bronchoalveolar lavage fluid (BALF) was also collected.

•EBC samples were obtained using EcoScreen condenser (Jaeger, Wyrzburg, Germany)

•*Reusable EBC parts were cleaned and treated using a sodium-ipochlorite solution rised with water.* 

NMR EBC metabonomic to assess the nutricecutic effect in COPD. A pilot study of oral administration of a curcumin based herbal preparation G Scapagnini, N Abraham, S Davinelli, et al. The FASEB Journal 26, 239. 2013





| Buckets                                                  | Metabolites                    |
|----------------------------------------------------------|--------------------------------|
| 2.72; 2.70; 2.68; 2.74                                   | Citrate, aspartate             |
| 8.26; 8.10;8.12; 8.54;                                   | ADP                            |
| 8.08; 8.10; 8.02; 8.00; 7.94;<br>7.92;                   | NAD; <u>methyl</u> paraben     |
| 8.24;                                                    | Hypoxanthine                   |
| 1.60; 0.88; 1.56, 0.96, 1.54;<br>0.84; 1.52; 1.62; 1.50; | Saturated fatty acids, leucine |
| 7.66; 7.64; 7.56; 7.82; 7.58;<br>7.80                    | Hippurate                      |







CAT score was 20.35  $\pm$  6.32 at baseline and 12.72  $\pm$  7.12 at T1

# Andrographis Paniculata shows anti-nociceptive effects in an animal model of sensory hypersensitivity associated with migraine

Rosaria Greco, PhD<sup>a</sup> Francesca Siani, PhD<sup>b1</sup> Chiara Demartini<sup>a1</sup> Annamaria Zanaboni<sup>a,d</sup> Giuseppe Nappi, MD<sup>a</sup> Sergio Davinelli, PhD<sup>c</sup> Giovanni Scapagnini, MD<sup>c</sup> Cristina Tassorelli, MD, PhD<sup>a,d</sup>

<sup>a</sup>Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Center, C. Mondino National Neurological Institute, Pavia, Italy



Functional Neurology 2016; 31(1): 53-60



### **BMC** Neurology

#### **RESEARCH ARTICLE**





# Andrographis paniculata decreases fatigue in patients with relapsing-remitting multiple sclerosis: a 12-month double-blind placebo-controlled pilot study

J. C. Bertoglio<sup>1</sup>, M. Baumgartner<sup>2</sup>, R. Palma<sup>2</sup>, E. Ciampi<sup>3</sup>, C. Carcamo<sup>3</sup>, D. D. Cáceres<sup>4</sup>, G. Acosta-Jamett<sup>5</sup>, J. L. Hancke<sup>6</sup> and R. A. Burgos<sup>6\*</sup>

| Parameter                              |   | A. paniculata n = 13 |       |     |     | Placebo n = 11 |       |       |     |     |         |
|----------------------------------------|---|----------------------|-------|-----|-----|----------------|-------|-------|-----|-----|---------|
|                                        |   | Mean                 | SD    | min | max |                | Mean  | SD    | min | max | p-value |
| Age                                    |   | 35.09                | 11.79 | 15  | 47  |                | 38.70 | 10.65 | 22  | 51  | 0.3066  |
| Sex (w/m)                              |   | 9/4                  |       |     |     |                | 7/4   |       |     |     | 0.5250  |
| Disease duration prior to study (year) |   | 3.62                 | 4.56  | 0   | 16  |                | 6.00  | 8.20  | 0   | 24  | 0.8067  |
| Relapse (2 years)                      |   | 1.73                 | 1.27  | 1   | 5   |                | 1.46  | 0.52  | 1   | 2   | 0.9236  |
| EDSS                                   |   | 2.64                 | 1.29  | 1   | 5   |                | 2.08  | 1.66  | 0   | 6   | 0.1663  |
| FSS                                    |   | 4,15                 | 1,88  | 1   | 6.4 |                | 3.76  | 1.68  | 1   | 5.5 | 0.3990  |
| Gd lesion number                       | 0 |                      |       |     |     | 0              |       |       |     |     |         |
| Interferon-beta 1a im.(Avonex* 30 mcg) | 7 |                      |       |     |     | 5              |       |       |     |     |         |
| Interferon-beta 1a sc.(Rebif® 44 mcg)  | 6 |                      |       |     |     | 6              |       |       |     |     |         |
|                                        |   |                      |       |     |     |                |       |       |     |     |         |

Table 1 Baseline clinical and radiological characteristics of patients after randomisation in A. paniculata and placebo treatment groups



Fig. 2 FSS score is reduced in RRMS patients treated with *A. paniculata* compared to placebo during one year. Each point represents an individual score of patients measured at 0, 90, 180 and 360 days. A box-and-whisker plot with the minimum, 25th percentile, median, 75th percentile, and maximum values are depicted



### Mitochondrial biogenesis induction by grape ex. or maqui ex.







# A Randomized Clinical Trial Evaluating the Efficacy of an Anthocyanin-Maqui Berry Extract (Delphinol®) on Oxidative Stress Biomarkers.

Davinelli S<sup>1</sup>, Bertoglio JC<sup>2</sup>, Zarrelli A<sup>3</sup>, Pina R<sup>4</sup>, Scapagnini G<sup>1,5</sup>.





Change of oxidized LDL (Ox-LDL) values within each group after 4 wk of intervention and 40 days of follow up. Data are expressed as mean  $\pm$  SD.

\* Significant p < 0.05 from baseline.

**Effects of** Delphinidin **supplementation on urinary excretion of 8-iso-PGF2α in overweight smoker subjects.** Data are expressed as mean ± SD. \* Significant p < 0.05 from baseline.







The life of Hugh Macdonald Sinclair

Beannette Ewin



#### The Connection Between Fats and Heart Diseases

1969, Bang & Dyerberg: investigation in Greenland near absence of thrombotic heart diseases in Greenlanders





| Expert body                                                              | Year | Target population | Daily recommendation                          |
|--------------------------------------------------------------------------|------|-------------------|-----------------------------------------------|
| American Heart Association                                               | 2011 | Heart health      | Two fish meals for primary protection         |
| Heart Foundation Australia                                               | 2008 | Heart health      | 500 mg EPA/DHA for primary prevention         |
| FAO/WHO Expert Consultation                                              | 2010 | General health    | 250 mg EPA/DHA                                |
| European Food Safety Authority                                           | 2010 | General health    | 250 mg EPA/DHA                                |
| Japanese Ministry of Health                                              | 2009 | General health    | >1g EPA/DHA                                   |
| Health Council Netherlands                                               | 2006 | General health    | 450 mg EPA/DHA from fish                      |
| Australia New Zealand National<br>Health and Medical Research<br>Council | 2006 | Chronic disease   | n-3 LC-PUFAs: 610 mg for men 430 mg for women |
| Belgian Superior Health Council                                          | 2009 | Heart health      | Daily fatty fish or 1 g capsule               |
| Agence Francais de Securite<br>Sanitaire des Aliments                    | 2014 | General health    | 500 mg EPA/DHA                                |

#### Table 1. Omega-3 PUFA intake recommendations of expert international bodies for adults

DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; LC, long chain; PUFA, polyunsaturated fatty acid.

Salem N and Eggersdorfer M. Is the world supply of omega-3 fatty acids adequate for optimal human nutrition? Clinical nutrition 2015

### Dietary omega-3 fatty acids can affect synaptic plasticity and cognition.



## Associations between serum omega-3 fatty acid levels and cognitive functions among community-dwelling octogenarians in Okinawa, Japan: The KOCOA study

Junko Nishihira, MD<sup>1)</sup>, Takashi Tokashiki, MD, PhD<sup>1)</sup>, Yasushi Higashiuesato, MD, PhD<sup>2)</sup>, Donald Craig Willcox, MHSc, PhD<sup>3),4)</sup>, Nora Mattek, MPH<sup>5)</sup>, Lynne Shinto, ND, MPH<sup>5)</sup>, Yusuke Ohya, MD, PhD<sup>1)</sup>, and Hiroko H. Dodge, PhD<sup>5),6)</sup>

**Objective**—To examine the association between serum PUFA levels and cognitive function among community-dwelling, non-demented elderly aged over 80 years old.

**Results**—Serum DHA levels decreased with increasing age (p = 0.04). Higher global cognitive function was associated with higher levels of serum EPA (p = 0.03) and DHA + EPA (p = 0.03) after controlling for confounders.

**Conclusions**—Higher serum EPA and DHA + EPA levels were independently associated with better scores on global cognitive function among the oldest old, free from dementia. Longitudinal follow-up studies are warranted.

### Omega-3 Fatty Acids, Oxidative Stress, and Leukocyte Telomere Length: A Randomized Controlled Trial

Janice K. Kiecolt-Glaser<sup>a,1</sup>, Elissa S. Epel<sup>b</sup>, Martha A. Belury<sup>c</sup>, Rebecca Andridge<sup>d</sup>, Jue Lin<sup>e</sup>, Ronald Glaser<sup>a</sup>, William B. Malarkey<sup>a</sup>, Beom Seuk Hwang<sup>d</sup>, and Elizabeth Blackburn<sup>e</sup>

The double-blind 4-month trial included 106 healthy sedentary overweight middle-aged and older adults who received (1) 2.5 g/day n-3 PUFAs, (2) 1.25 g/day n-3 PUFAs, or (3) placebo capsules that mirrored the proportions of fatty acids in the typical American diet. Supplementation significantly lowered oxidative stress as measured by F2-isoprostanes (p=0.02). The estimated geometric mean log-F2-isoprostanes values were 15% lower in the two supplemented groups compared to placebo. Telomere length increased with decreasing n-6:n-3 ratios, p=0.02. The data suggest that lower n-6:n-3 PUFA ratios can impact cell aging.



Linear regression analysis for change in telomere length with change in n-6:n-3 fatty acid plasma ratio, controlling for baseline telomere length.

| Effect                                     | Estimate | 95% CI          | P-value |
|--------------------------------------------|----------|-----------------|---------|
| Intercept                                  | 1040     | (296, 1785)     | 0.007   |
| Telomere length, baseline                  | -0.15    | (-0.27, -0.031) | 0.01    |
| n-6:n3 fatty acids, baseline               | -21      | (-44, 2.0)      | 0.07    |
| Decrease in n6:n3 fatty acids <sup>a</sup> | 20       | (4, 36)         | 0.02    |

Units: telomere length = base pairs.

Regression model with change in telomere length (4 months minus baseline) as the outcome

<sup>a</sup>Decrease in n-6:n-3 PUFA ratio is calculated as baseline minus 4 months so that a positive value is a decrease in n-6:n-3 PUFA ratio.

Nutrigenetics Nutrigenomics

J Nutrigenet Nutrigenomics 2014;7:191–211 DOI: 10.1159/000375495 Received: December 30, 2014 Accepted: January 24, 2015 Published online: March 4, 2015 Www.karger.com/jnn Table 5. International Network of Centers for Genetics, Nutrition and Fitness for Health (directors)

#### **Original Paper**

The Impact of the Bellagio Report on Healthy Agriculture, Healthy Nutrition, Healthy People: Scientific and Policy Aspects and the International Network of Centers for Genetics, Nutrition and Fitness for Health

Artemis P. Simopoulos

The Center for Genetics, Nutrition and Health, Washington, D.C., USA



| Last name  | First name | Title/affiliation                                                                                                                                                                                                            | City/country                   |
|------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| Allayee    | Hooman     | Associate Professor, Department of Preventive<br>Medicine, University of Southern California Keck School<br>of Medicine, Los Angeles, Calif., USA                                                                            | Los Angeles,<br>Calif., USA    |
| Cesuroglu  | Tomris     | Researcher, Department of Social Medicine,<br>Maastricht University, Maastricht, The<br>Netherlands                                                                                                                          | Maastricht, The<br>Netherlands |
| Chrousos   | George     | Professor and Chairman, Department of<br>Pediatrics, University of Athens, Athens, Greece                                                                                                                                    | Athens, Greece                 |
| Gopalan    | Sarath     | Executive Director, Centre for Research on<br>Nutrition Support Systems (CRNSS), New Delhi, India                                                                                                                            | New Delhi,<br>India            |
| Johnson    | Richard    | Professor of Medicine, Chief, Division of Renal Diseases<br>and Hypertension, University of<br>Colorado, Denver, Colo., USA                                                                                                  | Denver, Colo.,<br>USA          |
| Kang       | Jing       | Associate Professor of Medicine, Director,<br>Laboratory for Lipid Medicine and Technology,<br>Massachusetts General Hospital and Harvard Medical<br>School, Boston, Mass., USA                                              | Boston, Mass.,<br>USA          |
| Kohlmeier  | Martin     | Professor, University of North Carolina School of Public<br>Health, Chapel Hill, N.C., USA                                                                                                                                   | Raleigh, N.C.,<br>USA          |
| Li         | Duo        | Professor, Department of Food Science and<br>Nutrition, Zhejiang University, Hangzhou, China                                                                                                                                 | Shanghai<br>Pudong, China      |
| Marcos     | Ascensión  | Research Professor, Spanish National Research Council,<br>Madrid, Spain                                                                                                                                                      | Madrid, Spain                  |
| Savas      | Serdar     | President, Turkish Society of Public Health<br>Genomics and Personalized Medicine, Istanbul, Turkey                                                                                                                          | Istanbul,<br>Turkey            |
| Scapagnini | Giovanni   | Associate Professor, Department of Medicine and Heath<br>Science, University of Molise, Campobasso, Italy                                                                                                                    | Campobasso,<br>Italy           |
| Schmidt    | Laura      | Professor, Philip R. Lee Institute for Health Policy<br>Studies and Department of Anthropology, History and<br>Social Medicine, School of Medicine, University of<br>California at San Francisco, San Francisco, Calif., USA | San Francisco,<br>Calif., USA  |
| Simopoulos | Artemis    | President, The Center for Genetics, Nutrition and Health,<br>Washington, D.C., USA                                                                                                                                           | Washington,<br>D.C., USA       |
| Waitzberg  | Dan        | Associate Professor, Department of Gastroenterology,<br>University of São Paulo Medical School, São Paulo, Brazil                                                                                                            | São Paulo,<br>Brazil           |
|            |            |                                                                                                                                                                                                                              |                                |



**Physical Activity and** psychological and social aspects, all play an important role in Okinawan longevity.

